Created
May 31, 2017 05:35
-
-
Save shabbychef/4a2e85844224613893f01e366d4b340f to your computer and use it in GitHub Desktop.
Compare Rolls Again
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
options(width=160) | |
suppressMessages({ | |
library(fromo) | |
library(roll) | |
library(RcppRoll) | |
library(microbenchmark) | |
library(RollingWindow) | |
}) | |
show(sessionInfo()) | |
set.seed(1234) | |
df <- data.frame(Adjusted=rnorm(10000)) | |
matdf <- as.matrix(df$Adjusted) | |
wins <- 50 | |
res <- microbenchmark(RcppRoll::roll_mean(df$Adjusted,n=wins,align='right',fill=NA), | |
roll::roll_mean(as.matrix(df$Adjusted), width=wins), | |
roll::roll_mean(matdf, width=wins), | |
RollingWindow::RollingMean(df$Adjusted, window=wins), | |
fromo::running_mean(df$Adjusted,window=wins,restart_period=10000L,na_rm=FALSE) | |
) | |
print(res) | |
# and again with 1 thread: | |
library(RcppParallel) | |
RcppParallel::setThreadOptions(numThreads = 1) | |
res <- microbenchmark(RcppRoll::roll_mean(df$Adjusted,n=wins,align='right',fill=NA), | |
roll::roll_mean(as.matrix(df$Adjusted), width=wins), | |
roll::roll_mean(matdf, width=wins), | |
RollingWindow::RollingMean(df$Adjusted, window=wins), | |
fromo::running_mean(df$Adjusted,window=wins,restart_period=10000L,na_rm=FALSE) | |
) | |
print(res) | |
# runtime should be independent of window size: | |
testme <- function(wins) { RcppRoll::roll_mean(df$Adjusted,n=wins,align='right',fill=NA) } | |
res <- microbenchmark(testme(10), | |
testme(100), | |
testme(1000)) | |
print(res) | |
testme <- function(wins) { roll::roll_mean(as.matrix(df$Adjusted), width=wins) } | |
res <- microbenchmark(testme(10), | |
testme(100), | |
testme(1000)) | |
print(res) | |
testme <- function(wins) { RollingWindow::RollingMean(df$Adjusted, window=wins) } | |
res <- microbenchmark(testme(10), | |
testme(100), | |
testme(1000)) | |
print(res) | |
testme <- function(wins) { fromo::running_sd3(df$Adjusted,window=wins,restart_period=10000L,na_rm=FALSE)[,2] } | |
res <- microbenchmark(testme(10), | |
testme(100), | |
testme(1000)) | |
print(res) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
R version 3.3.2 (2016-10-31) | |
Platform: x86_64-pc-linux-gnu (64-bit) | |
Running under: Ubuntu 16.04.2 LTS | |
locale: | |
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 | |
[6] LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C | |
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C | |
attached base packages: | |
[1] methods stats utils base | |
other attached packages: | |
[1] RollingWindow_0.2 microbenchmark_1.4-2.1 RcppRoll_0.2.2 roll_1.0.7 fromo_0.1.3.3330 Quandl_2.8.0 | |
[7] xts_0.9-7 zoo_1.7-12 drat_0.1.2 | |
loaded via a namespace (and not attached): | |
[1] Rcpp_0.12.10 lattice_0.20-33 grDevices_3.3.2 plyr_1.8.4 grid_3.3.2 R6_2.2.0 jsonlite_1.4 | |
[8] gtable_0.2.0 scales_0.4.1 RcppParallel_4.3.20 ggplot2_2.2.1 httr_1.2.1 lazyeval_0.2.0 graphics_3.3.2 | |
[15] tools_3.3.2 munsell_0.4.3 colorspace_1.3-2 tibble_1.3.0 | |
Unit: microseconds | |
expr min lq mean median uq max neval cld | |
RcppRoll::roll_mean(df$Adjusted, n = wins, align = "right", fill = NA) 322.42 350.20 370.48 360.49 376.24 586.9 100 c | |
roll::roll_mean(as.matrix(df$Adjusted), width = wins) 395.35 409.88 460.07 420.54 451.53 1367.7 100 d | |
roll::roll_mean(matdf, width = wins) 333.89 369.15 410.55 380.20 395.86 1301.9 100 c | |
RollingWindow::RollingMean(df$Adjusted, window = wins) 158.18 169.63 213.23 186.45 197.12 1156.5 100 b | |
fromo::running_mean(df$Adjusted, window = wins, restart_period = 10000L, na_rm = FALSE) 67.17 73.24 94.79 80.98 95.26 968.8 100 a | |
Unit: microseconds | |
expr min lq mean median uq max neval cld | |
RcppRoll::roll_mean(df$Adjusted, n = wins, align = "right", fill = NA) 296.50 301.35 322.0 305.20 315.47 599.7 100 c | |
roll::roll_mean(as.matrix(df$Adjusted), width = wins) 864.41 868.92 916.9 874.60 904.18 2062.9 100 d | |
roll::roll_mean(matdf, width = wins) 842.19 846.24 878.6 849.39 871.29 1901.5 100 d | |
RollingWindow::RollingMean(df$Adjusted, window = wins) 142.49 147.81 207.5 150.36 161.82 1241.4 100 b | |
fromo::running_mean(df$Adjusted, window = wins, restart_period = 10000L, na_rm = FALSE) 60.37 64.75 68.5 66.16 68.49 101.7 100 a | |
Unit: microseconds | |
expr min lq mean median uq max neval cld | |
testme(10) 75.47 83.92 92.09 90.62 95.76 163.5 100 a | |
testme(100) 613.74 617.37 664.31 632.50 669.83 1091.8 100 b | |
testme(1000) 6922.48 7107.21 7322.85 7223.01 7530.08 8577.1 100 c | |
Unit: microseconds | |
expr min lq mean median uq max neval cld | |
testme(10) 242.9 256 294.2 270.9 303.5 1340 100 a | |
testme(100) 1587.1 1665 1750.4 1718.7 1774.9 2909 100 b | |
testme(1000) 14307.4 14720 15271.9 14988.2 15481.4 18745 100 c | |
Unit: microseconds | |
expr min lq mean median uq max neval cld | |
testme(10) 145.2 149.8 221.3 155.6 178.6 1283.9 100 ab | |
testme(100) 142.1 150.2 233.7 156.0 171.9 1587.4 100 b | |
testme(1000) 139.1 146.8 162.7 152.4 166.8 322.9 100 a | |
Unit: microseconds | |
expr min lq mean median uq max neval cld | |
testme(10) 487.8 543.9 622.3 571.0 630.0 2197 100 a | |
testme(100) 481.1 548.8 691.2 587.7 635.1 2771 100 a | |
testme(1000) 498.3 536.6 613.0 570.2 629.4 2790 100 a |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment