Last active
July 1, 2021 17:35
-
-
Save shadiakiki1986/6d2b641264b054bc63b224a726a1ead8 to your computer and use it in GitHub Desktop.
python get memory size of object
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Recursively get size of objects | |
# https://stackoverflow.com/a/59228005/4126114 | |
# https://stackoverflow.com/a/38515297/4126114 | |
# Published at https://gist.github.com/shadiakiki1986/6d2b641264b054bc63b224a726a1ead8 | |
def nested_apply(x, func, max_depth, depth_current=0): | |
s1 = func(x) | |
if depth_current >= max_depth: return s1 | |
wrap_napply = lambda v: nested_apply(v, func, max_depth, depth_current+1) | |
if hasattr(x, "__dict__"): | |
s2 = {} | |
for k,v in x.__dict__.items(): | |
s2[k] = wrap_napply(getattr(x,k)) | |
return {"self": s1, "children": s2} | |
if isinstance(x, dict): | |
s2 = {k: wrap_napply(v) for k,v in x.items()} | |
return s2 | |
if isinstance(x, list): | |
s2 = [wrap_napply(v) for v in x] | |
return s2 | |
return s1 | |
import pickle | |
def nested_sizeof(x, factor, depth): | |
""" | |
factor: use 1e9 to get values in GB | |
""" | |
func = lambda x: round(len(pickle.dumps(x))/factor,1) | |
return nested_apply(x, func, depth) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pprint | |
import numpy as np | |
f_mb, f_gb = int(1e6), int(1e9) | |
x = np.zeros((100, 10000)) | |
pprint.pprint(nested_sizeof(x, f_mb, 1)) | |
# 0.8 | |
b = {"x1": x, "a": {"x2": x, "c": [1,2,3]}, "x3": np.copy(x)} | |
pprint.pprint(nested_sizeof(b, f_mb, 0)) | |
pprint.pprint(nested_sizeof(b, f_mb, 1)) | |
pprint.pprint(nested_sizeof(b, f_mb, 2)) | |
pprint.pprint(nested_sizeof(b, f_mb, 3)) | |
# 16 | |
# {'a': 8, 'x1': 8, 'x3': 8} | |
# {'a': {'c': 0, 'x2': 8}, 'x1': 8, 'x3': 8} | |
# {'a': {'c': [0, 0, 0], 'x2': 8}, 'x1': 8, 'x3': 8} | |
nested_apply(b, lambda x: type(x), 10) | |
# {'a': {'c': [int, int, int], 'x2': numpy.ndarray}, 'x1': numpy.ndarray} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment