Created
July 31, 2013 01:54
-
-
Save shajra/6118699 to your computer and use it in GitHub Desktop.
making Free and then a list with it
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package learning | |
trait Functor[F[_]] { | |
def map[A,B](a: F[A])(f: A => B): F[B] | |
} | |
trait Monad[M[_]] extends Functor[M] { | |
def point[A](a: A): M[A] | |
def flatMap[A,B](a: M[A])(f: A => M[B]): M[B] | |
} | |
abstract class Free[F[_]: Functor, A] { | |
def resume: Either[A, F[Free[F, A]]] | |
def map[B](f: A => B): Free[F, B] = | |
implicitly[Monad[({type λ[a] = Free[F, a]})#λ]].map(this)(f) | |
def flatMap[B](f: A => Free[F,B]): Free[F, B] = | |
implicitly[Monad[({type λ[a] = Free[F, a]})#λ]].flatMap(this)(f) | |
} | |
case class Done[F[_]: Functor, A](a: A) extends Free[F, A] { | |
def resume = Left(a) | |
} | |
case class More[F[_]: Functor, A](k: F[Free[F,A]]) extends Free[F, A] { | |
def resume = Right(k) | |
} | |
object Free extends App { | |
implicit def freeMonad[F[_]](implicit F: Functor[F]) | |
: Monad[({type λ[a] = Free[F, a]})#λ] = { | |
type M[a] = Free[F, a] | |
new Monad[M] { | |
def point[A](a: A): M[A] = Done(a) | |
def map[A,B](a: M[A])(f: A => B): M[B] = | |
a match { | |
case Done(a) => Done(f(a)) | |
case More(c) => More(F.map(c) { map(_)(f) }) | |
} | |
def flatMap[A,B](a: M[A])(f: A => M[B]): M[B] = | |
a match { | |
case Done(a) => f(a) | |
case More(c) => More(F.map(c) { flatMap(_)(f) }) | |
} | |
} | |
} | |
implicit def freeListFunctorLeft[A] | |
: Functor[({type λ[a] = (A, a)})#λ] = { | |
type F[O] = (A, O) | |
new Functor[F] { | |
def map[B,C](a: F[B])(f: B => C): F[C] = (a._1, f(a._2)) | |
} | |
} | |
type FreeList[A] = | |
Free[({type λ[a] = (A, a)})#λ, Unit] | |
def nil[A]: FreeList[A] = | |
Done[({type λ[a] = (A, a)})#λ, Unit](()) | |
def cons[A](a: A, as: FreeList[A]): FreeList[A] = | |
More[({type λ[a] = (A, a)})#λ, Unit]((a, as)) | |
val exampleFreeList: FreeList[Int] = | |
cons(1, cons(2, cons(3, nil))) | |
def functorLeft[A] = implicitly[Functor[({type F[aa] = (A, aa)})#F]] | |
def toList[A](fl: FreeList[A]): List[A] = | |
fl.resume match { | |
case Left(_) => Nil | |
case Right((a, as)) => a :: toList(as) | |
} | |
// just seeing what happens in a for-comprehension; I'm getting this: | |
// | |
// List(1, 2, 3, 1, 2, 3) | |
// | |
println(toList(for(a <- exampleFreeList; b <- exampleFreeList) yield ())) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment