import numpy as np
from sklearn.preprocessing import OneHotEncoder
# Load the npz file
data = np.load('data.npz')
X, y = data["x"], data["y"]
print(y.shape)
# Output: (1519,)
print(y[0:5])
# Output
# array([1, 1, 0, 0, 1])
print(np.unique(y))
# Output
# array([0, 1])
# Encode the target variable
enc = OneHotEncoder()
y_binary = enc.fit_transform(y.reshape(-1, 1))
y_binary = y_binary.toarray()
print(y_binary.shape)
# Output: (1519, 2)
print(y[0:5])
# Output
# array([[0., 1.],
# [0., 1.],
# [1., 0.],
# [1., 0.],
# [0., 1.]])
Last active
August 15, 2022 08:18
-
-
Save shamilnabiyev/72507869b000f9be9aa50b78a4f068e9 to your computer and use it in GitHub Desktop.
OneHotEncoder
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment