Created
March 5, 2014 19:59
-
-
Save shane5ul/9375343 to your computer and use it in GitHub Desktop.
Prettified f90ppr example
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
! | |
!-------------------------------------------------------------------------------------------------- | |
subroutine tridiag (a, b, c, r, u, n, code) | |
! Solves for a vector u of length n the tridiagonal linear set ! from numerical recipes | |
! m u = r, where a, b and c are the three main diagonals of matrix ! | |
! m(n,n), the other terms are 0. r is the right side vector. ! | |
!-------------------------------------------------------------------------------------------------- | |
integer, parameter :: nmax = 100 | |
integer, intent (in) :: n | |
double precision, intent (in) :: a (n), b (n), c (n), r (n) | |
double precision, intent (out) :: u (n) | |
integer, intent (out) :: code | |
! | |
double precision :: bet, gam (nmax) | |
integer :: j | |
! | |
if (b(1) .eq. 0.d0) then | |
code = 1 ! error unless code=0 | |
return | |
end if | |
! | |
bet = b (1) | |
u (1) = r (1) / bet | |
do j = 2, n ! decomposition and forward substitution | |
gam (j) = c (j-1) / bet | |
bet = b (j) - a (j) * gam (j) | |
if (bet .eq. 0.d0) then ! algorithm fails | |
code = 2 | |
return | |
end if | |
u (j) = (r(j)-a(j)*u(j-1)) / bet | |
end do | |
! | |
do j = n - 1, 1, - 1 !back substitution | |
u (j) = u (j) - gam (j+1) * u (j+1) | |
end do | |
! | |
code = 0 | |
return | |
! | |
end subroutine tridiag |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment