Created
June 12, 2015 19:03
-
-
Save shanehsu/c6cf6cd22b06c1c8503b to your computer and use it in GitHub Desktop.
微積分:第九章
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<html> | |
<head> | |
<meta charset="utf-8"> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
<title>微積分:第九章</title> | |
<link rel="stylesheet" href="https://stackedit.io/res-min/themes/base.css" /> | |
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML"></script> | |
</head> | |
<body><div class="container"><h1 id="第九章">第九章</h1> | |
<h2 id="第一節">第一節</h2> | |
<h3 id="序列-函數">序列 <=> 函數</h3> | |
<p>序列可以視為一個將正整數(或非負整數)映射到值的函數:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1134"> | |
a_0 = 1 \\ | |
a_1 = 2 \\ | |
a_2 = 4 \\ | |
f(x) = 2^x | |
</script></p> | |
<p>若序列有極限,代表此對應函數有極限。</p> | |
<h3 id="基本數列收斂性">基本數列收斂性</h3> | |
<h4 id="交錯序列">交錯序列</h4> | |
<p>若序列在兩數字之間交換,則數列發散(<script type="math/tex" id="MathJax-Element-1135">2, 4, 2, 4, 2, 4, ...</script>)。</p> | |
<h4 id="用函數極限">用函數極限</h4> | |
<p>數列 <script type="math/tex" id="MathJax-Element-1136">\left\{ a_n \right\} = \left\{\frac{n}{1 - 2n}\right\}</script> 收斂至 <script type="math/tex" id="MathJax-Element-1137">-\frac{1}{2}</script>:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1138"> | |
\lim_{n \to \infty} \frac{n}{1 - 2n} = \lim_{n \to \infty} \cfrac{\cfrac{n}{n}}{\cfrac{1 - 2n}{n}} = \lim_{n \to \infty} \cfrac{1}{\cfrac{1}{n} - 2} = \frac{1}{-2} | |
</script></p> | |
<h4 id="用羅必達求函數極限">用羅必達求函數極限</h4> | |
<p>數列 <script type="math/tex" id="MathJax-Element-1139">\left\{ a_n \right\} = \left\{\frac{n^2}{2^n - 1}\right\}</script> 收斂至 <script type="math/tex" id="MathJax-Element-1140">0</script>:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1141"> | |
\lim_{n \to \infty} \frac{n^2}{2^n - 1} = \lim_{n \to \infty} \frac{2n}{2^n\ln 2} = \lim_{n \to \infty} \frac{2}{2^n\left(\ln 2\right)^2} | |
</script></p> | |
<h4 id="用夾擠定理">用夾擠定理</h4> | |
<h5 id="範例一">範例一</h5> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1142"> | |
\{c_n\} = \left\{\left(-1\right)^n\frac{1}{n!}\right\} \\ | |
\frac{-1}{2^n} \le \left(-1\right)^n\frac{1}{n!} \le \frac{1}{2^n} \quad n \ge 4 \\ | |
\lim_{n \to \infty} \frac{-1}{2^n} = \lim_{n \to \infty} \frac{1}{2^n} = 0 \\ | |
\lim_{n \to \infty} \left(-1\right)^n\frac{1}{n!} = 0 | |
</script></p> | |
<h5 id="範例二">範例二</h5> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1143"> | |
\{c_n\} = \left\{\frac{1}{n!}\right\} \\ | |
0 \le \left\{\left(-1\right)^n\frac{1}{n!}\right\} \le \frac{1}{2^n} \quad n \ge 4 \\ | |
\lim_{n \to \infty} \frac{1}{2^n} = 0 \\ | |
\lim_{n \to \infty} \left(-1\right)^n\frac{1}{n!} = 0 | |
</script></p> | |
<h4 id="絕對值定理">絕對值定理</h4> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1144"> | |
\lim_{n \to \infty} \left\lvert a_n \right\rvert = 0 \implies \lim_{n \to \infty} a_n = 0 | |
</script></p> | |
<h3 id="尋找數列通式">尋找數列通式</h3> | |
<p>檢查乘法、加法。</p> | |
<h3 id="單調數列">單調數列</h3> | |
<p>若數列遞增或是遞減,則稱為單調(Monotonic)。</p> | |
<h3 id="有界數列">有界數列</h3> | |
<p>若數列的值永遠在一個值域之內,則稱為有界(Bounded)。</p> | |
<p>若一個數列單調且有界,則一定收斂。</p> | |
<h2 id="第二節">第二節</h2> | |
<h3 id="無窮級數定義">無窮級數定義</h3> | |
<p>若 <script type="math/tex" id="MathJax-Element-1145">\left\{ S_n \right\} = \left\{ \sum^{n}_{k=1} a_k \right\}</script> 本身收斂,則無窮級數收斂於 <script type="math/tex" id="MathJax-Element-1146">\sum^{\infty}_{k=1} a_k</script>。</p> | |
<h3 id="無窮級數範例">無窮級數範例</h3> | |
<h4 id="12n"><script type="math/tex" id="MathJax-Element-1147">1/2^n</script></h4> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1148"> | |
\begin{align} | |
S_n = \sum_{n=1}^{\infty} {\frac{1}{2^n}} &= \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdot \cdot \cdot \\ | |
S_n = \sum_{n=1}^{\infty} {\frac{1}{2^n}} &= \frac{2^{n-1}}{2^n} + \frac{2^{n-2}}{2^n} + \frac{2^{n-3}}{2^n} + \cdot \cdot \cdot \\ | |
S_n = \sum_{n=1}^{\infty} {\frac{1}{2^n}} &= \frac{\sum_{k = 0}^{n - 1}{2^{k}}}{2^n} = \frac{2^n-1}{2^n}=1 | |
\end{align} | |
</script></p> | |
<h4 id="裂項和telescroping-series">裂項和(Telescroping Series)</h4> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1149"> | |
\sum_{n=1}^{\infty} \frac{1}{n\left(n+1\right)} = \sum_{n=1}^{\infty}{\left( \frac{1}{n} - \frac{1}{n + 1} \right)} = 1 - \frac{1}{n + 1} | |
</script></p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1150"> | |
\sum_{k = 1}^{n} \left( a_k - a_{k - 1} \right) = a_n - a_0 \\ | |
a_n \to c \implies \sum_{k=1}^{\infty} = c - a_0 | |
</script></p> | |
<h4 id="用裂項和求解">用裂項和求解</h4> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1151"> | |
S_n = \sum_{n = 1}^{\infty} \frac{2}{4n^2 - 1} \\ | |
\frac{2}{4n^2 - 1} = \frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{2n-1}-\frac{1}{2n+1} \\ | |
\lim_{n\to \infty} S_n = 1 | |
</script></p> | |
<h4 id="等比級數geometric-series">等比級數(Geometric Series)</h4> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1152"> | |
\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \quad 0 < \left\lvert r \right\rvert < 1 | |
</script></p> | |
<p>若 <script type="math/tex" id="MathJax-Element-1153">\left\lvert r \right\rvert \ge 1</script> 則發散。</p> | |
<h4 id="用等比級數求解">用等比級數求解</h4> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1154"> | |
\begin{align} | |
0.\overline{08} &= \frac{8}{10^2} + \frac{8}{10^4} + \cdot\cdot\cdot \\ | |
&= \sum_{n = 0}^{\infty} \left( \frac{8}{10^2} \right) \left( \frac{1}{10^2} \right) ^ n \\ | |
&= \cfrac{\cfrac{8}{10^2}}{1 - \cfrac{1}{10^2}} = \frac{8}{99} | |
\end{align} | |
</script></p> | |
<h3 id="基本定理">基本定理</h3> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1155"> | |
\lim_{n \to \infty} S_n = c \implies \lim_{n \to \infty} a_n = 0 \\ | |
\lim_{n \to \infty} a_n \neq 0 \implies S_n \; \mathrm{diverges} \\ | |
</script></p> | |
<h4 id="基本定理應用">基本定理應用</h4> | |
<p><script type="math/tex" id="MathJax-Element-1156">\left\{2^n\right\}</script> 級數發散。</p> | |
<p><script type="math/tex" id="MathJax-Element-1157">\left\{ \frac{n!}{2n!+1} \right\}</script> 級數發散。</p> | |
<p><script type="math/tex" id="MathJax-Element-1158">\left\{\frac{1}{n}\right\}</script> 級數無法確認。</p> | |
<h2 id="第三節">第三節</h2> | |
<h3 id="積分試驗法">積分試驗法</h3> | |
<p>若 <script type="math/tex" id="MathJax-Element-1159">f\left(x\right) \; x \ge 1</script> 為正、連續且遞減,而 <script type="math/tex" id="MathJax-Element-1160">a_n = f\left(n\right)</script>:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1161"> | |
\sum_{n = 1}^{\infty} a_n \quad \text{and} \quad \int_{1}^{\infty} f\left(x\right) dx \\ | |
\text{either both converge or both diverge.} | |
</script></p> | |
<h4 id="證明">證明</h4> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1162"> | |
\sum_{i = 2}^{n} f\left(i\right) \le \int_{1}^{n} f\left(x\right)dx \le \sum_{i = 1}^{n - 1} f\left(i\right) \\ | |
S_n - f \left( 1 \right) \le \int_{1}^{n} f\left(x\right)dx \le S_{n-1} \\ | |
\text{Assume} \; \int_{1}^{n} f\left(x\right)dx \; \text{converges to} \; L \\ | |
S_n - f\left(1\right) \le L \implies S_n \le L + f\left(1\right) \; \text{for} \; n \ge 1 \\ | |
\text{Consequently} \; \left\{S_n\right\} \; \text{is bounded and monotonic, converges.} \\ | |
\text{Assume} \; \int_{1}^{n} f\left(x\right)dx \; \text{diverge to} \; \infty \\ | |
\text{By} \; S_{n-1} \ge \int_{1}^{n} f\left(x\right)dx \text{, } \; S_{n-1} \;\text{diverges} | |
</script></p> | |
<h4 id="範例一-1">範例一</h4> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1163"> | |
\begin{align} | |
f\left(n\right) = a_n &= \frac{n}{n^2 + 1} \\ | |
S_n &= \sum_{n=1}^{\infty} \frac{n}{n^2 + 1} \\ | |
\because f\left(n\right) \gt 0 & \; \text{and continuous, and } f'\left(x\right) < 0 \text{ for } x > 1 \\ | |
\therefore & \text{ We can use Integral Test.} \\ | |
\end{align} | |
</script></p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1164"> | |
\begin{align} | |
\int_{1}^{\infty}\frac{x}{x^2 + 1} dx &= \frac{1}{2} \int_{1}^{\infty}\frac{1}{x^2 + 1}dx^2 \\ | |
&= \lim_{t \to \infty} \left[ \ln\left(x^2 + 1\right) \right]^{t}_{1} \\ | |
&= \infty | |
\end{align} | |
</script></p> | |
<h4 id="範例二-1">範例二</h4> | |
<p>Apply the Integral Test to the series <script type="math/tex" id="MathJax-Element-1165">\sum_{n = 1}^{\infty}\frac{1}{n^2 + 1}</script>:</p> | |
<p>The function is positive, and continuous for <script type="math/tex" id="MathJax-Element-1166">x \ge 1</script>, and its deriviative is negative for <script type="math/tex" id="MathJax-Element-1167">x \gt 1</script>.</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1168"> | |
\int_{1}^{\infty} \frac{1}{x^2 + 1} dx = \lim_{t \to \infty} \left[ \arctan x \right]^{b}_{1} = \frac{\pi}{4} | |
</script></p> | |
<h4 id="範例三">範例三</h4> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1169"> | |
\sum_{n = 2}^{\infty} \frac{1}{n\ln n} | |
</script></p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1170"> | |
\because f\left(x\right) \gt 0 \text{ for } x \ge 1 \text{, and is continuous. Its derivative } f'\left(x\right) \text{ is negative for } x \gt 1\\ | |
\therefore \text{We can apply the Integral Test.} | |
</script></p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1171"> | |
\begin{align} | |
\int_{2}^{\infty} \frac{1}{n\ln n} dn &= \int_{2}^{\infty} \frac{1/n}{\ln n} dn \\ | |
&= \int_{2}^{\infty} \frac{1}{\ln n} d\ln n \\ | |
&= \ln \ln n \vert^{\infty}_{2} | |
\end{align} | |
</script></p> | |
<h3 id="特殊級數">特殊級數</h3> | |
<p>黎曼 zeta 函數:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1172"> | |
\zeta\left(s\right) = \sum_{n = 1}^{\infty} \frac{1}{n^s} | |
</script></p> | |
<p>此級數又稱為 p 級數,在 <script type="math/tex" id="MathJax-Element-1173">s \gt 1</script> 時收斂,<script type="math/tex" id="MathJax-Element-1174">s \le 1</script> 時發散。</p> | |
<p>若 <script type="math/tex" id="MathJax-Element-1175">s = 1</script>,此級數稱為調和級數(Harmonic Series);<script type="math/tex" id="MathJax-Element-1176">s = 2</script> 稱為巴塞爾問題(Basel Problem),答案為 <script type="math/tex" id="MathJax-Element-1177">\frac{\pi^2}{6}</script>;<script type="math/tex" id="MathJax-Element-1178">s = 3</script> 稱為阿培里常數。</p> | |
<h2 id="第四節">第四節</h2> | |
<h3 id="直接比較法direct-comparison-test">直接比較法(Direct Comparison Test)</h3> | |
<p>若有兩數列 <script type="math/tex" id="MathJax-Element-1179">\left\{a_n\right\}, \left\{b_n\right\}</script> 以及其無窮級數 <script type="math/tex" id="MathJax-Element-1180">A_\infty, B_\infty</script>,且符合 <script type="math/tex" id="MathJax-Element-1181">0 \lt a_n \lt b_n</script>:</p> | |
<p>若 <script type="math/tex" id="MathJax-Element-1182">B_\infty</script> 收斂,則 <script type="math/tex" id="MathJax-Element-1183">A_\infty</script> 收斂;若 <script type="math/tex" id="MathJax-Element-1184">A_\infty</script> 發散,則 <script type="math/tex" id="MathJax-Element-1185">B_\infty</script> 發散。</p> | |
<h3 id="極限比較法limit-comparison-test">極限比較法(Limit Comparison Test)</h3> | |
<p>若有兩數列 <script type="math/tex" id="MathJax-Element-1186">\left\{a_n\right\}, \left\{b_n\right\}</script> 符合 <script type="math/tex" id="MathJax-Element-1187">\lim_{n \to \infty} \frac{a_n}{b_n} = L</script> 且 <script type="math/tex" id="MathJax-Element-1188">L</script> 是一個非無窮正數,則兩無窮級數 <script type="math/tex" id="MathJax-Element-1189">A_\infty, B_\infty</script> 收斂性必相同。</p> | |
<h4 id="範例">範例</h4> | |
<p>測試 <script type="math/tex" id="MathJax-Element-1190">\sum_{n = 1}^{\infty} \frac{1}{an + b} \; , \; a \gt 0 , \; b \gt 0</script> 的收斂性。</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1191"> | |
a_n = \frac{1}{an + b} \\ | |
b_n = \frac{1}{n} \\ | |
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{an + b}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{an + b} = \frac{1}{a} | |
</script></p> | |
<h4 id="極限方法">極限方法</h4> | |
<table> | |
<thead> | |
<tr> | |
<th align="center">Given Series</th> | |
<th align="center">Comparison Series</th> | |
<th align="center">Conclusion</th> | |
</tr> | |
</thead> | |
<tbody><tr> | |
<td align="center"><script type="math/tex" id="MathJax-Element-1192">\sum_{n = 1}^{\infty}\frac{1}{3n^2-4n+5}</script></td> | |
<td align="center"><script type="math/tex" id="MathJax-Element-1193">\sum_{n = 1}^{\infty}\frac{1}{n^2}</script></td> | |
<td align="center">Both series converge.</td> | |
</tr> | |
<tr> | |
<td align="center"><script type="math/tex" id="MathJax-Element-1194">\sum_{n = 1}^{\infty}\frac{1}{\sqrt{3n-2}}</script></td> | |
<td align="center"><script type="math/tex" id="MathJax-Element-1195">\sum_{n = 1}^{\infty}\frac{1}{n^2}</script></td> | |
<td align="center">Both series diverge.</td> | |
</tr> | |
<tr> | |
<td align="center"><script type="math/tex" id="MathJax-Element-1196">\sum_{n = 1}^{\infty}\frac{n^2-10}{4n^5+n^3}</script></td> | |
<td align="center"><script type="math/tex" id="MathJax-Element-1197">\sum_{n = 1}^{\infty}\frac{1}{n^3}</script></td> | |
<td align="center">Both series converge.</td> | |
</tr> | |
<tr> | |
<td align="center"><script type="math/tex" id="MathJax-Element-1198">\sum_{n = 1}^{\infty}\frac{n2^n}{4n^3+1}</script></td> | |
<td align="center"><script type="math/tex" id="MathJax-Element-1199">\sum_{n = 1}^{\infty}\frac{2^n}{n^2}</script></td> | |
<td align="center">Both series diverge.</td> | |
</tr> | |
</tbody></table> | |
<h2 id="第五節">第五節</h2> | |
<h3 id="交錯級數">交錯級數</h3> | |
<p>若 <script type="math/tex" id="MathJax-Element-1200">\left\{a_n\right\} \gt 0</script>,則我們可以這樣定義交錯級數:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1201"> | |
\sum_{n = 1}^{\infty} \left( -1 \right)^n a_n \quad\text{or}\quad\sum_{n = 1}^{\infty} \left( -1 \right)^{n+1} a_n | |
</script></p> | |
<h3 id="交錯級數測試alternating-series-test">交錯級數測試(Alternating Series Test)</h3> | |
<p>交錯級數若符合以下特性則會收斂:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1202"> | |
\lim_{n \to \infty}a_n = 0 \\ | |
a_{n+1} \le a_n, \text{for all } n | |
</script></p> | |
<h4 id="範例一-2">範例一</h4> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1203"> | |
\sum_{n=1}^{\infty} \left(-1\right)^{n+1}\frac{1}{n} \\ | |
\lim_{n \to \infty} a_n = 0 \\ | |
\frac{1}{n+1} \le \frac{1}{n} \\ | |
\text{Converges} | |
</script></p> | |
<h4 id="範例二-2">範例二</h4> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1204"> | |
\sum_{n=1}^{\infty} \frac{n}{\left(-2\right)^{n-1}} \\ | |
\frac{n}{\left(-2\right)^{n-1}} = \left(-1\right)^{n+1}\frac{n}{2^{n-1}} \\ | |
a_n = \frac{n}{2^{n-1}}\\ | |
\lim_{n \to \infty}a_n = 0 \\ | |
a_n = \frac{n}{2^{n-1}} = \frac{2n}{2^n} \\ | |
a_{n+1} = \frac{n+1}{2^n} \\ | |
\frac{2n}{2^n} \ge \frac{n+1}{2^n},\;\text{for $n \ge 1$} | |
</script></p> | |
<h3 id="交錯級數餘項alternating-series-remainder">交錯級數餘項(Alternating Series Remainder)</h3> | |
<p>若以數列的前 <script type="math/tex" id="MathJax-Element-1205">N</script> 項估計級數和,其誤差值將小於等於第 <script type="math/tex" id="MathJax-Element-1206">N+1</script> 項。</p> | |
<h3 id="絕對以及條件收斂">絕對以及條件收斂</h3> | |
<h4 id="絕對收斂定理absolute-convergence-theorem">絕對收斂定理(Absolute Convergence Theorem)</h4> | |
<p>若 <script type="math/tex" id="MathJax-Element-1207">\sum\left\lvert a_n\right\rvert</script> 收斂,<script type="math/tex" id="MathJax-Element-1208">\sum a_n</script> 也收斂。</p> | |
<h5 id="範例-1">範例</h5> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1209"> | |
\sum_{n=1}^{\infty}\frac{\sin n}{n^2} \\ | |
\sum_{n=1}^{\infty}\left\lvert\frac{\sin n}{n^2}\right\rvert \le \sum_{n=1}^{\infty}\left\lvert\frac{1}{n^2}\right\rvert \\ | |
\text{All three series converge.} | |
</script></p> | |
<h4 id="定義">定義</h4> | |
<p><script type="math/tex" id="MathJax-Element-1210">\sum\left\lvert a_n\right\rvert</script> 以及 <script type="math/tex" id="MathJax-Element-1211">\sum a_n</script> 都收斂,稱為絕對收斂。</p> | |
<p><script type="math/tex" id="MathJax-Element-1212">\sum\left\lvert a_n\right\rvert</script> 發散,但是 <script type="math/tex" id="MathJax-Element-1213">\sum a_n</script> 收斂,稱為條件收斂。</p> | |
<p>若級數絕對收斂,改變項的順序,不會改變級數和。</p> | |
<p>若級數條件收斂,改變項的順序,可能會改變級數和。</p> | |
<h5 id="範例-2">範例</h5> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1214"> | |
\sum_{n = 1}^{\infty}\left(-1\right)^n\frac{1}{n} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} + \cdot\cdot\cdot = \ln2 \\ | |
\sum_{n = 1}^{\infty}\left(-1\right)^n\frac{1}{n} = 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \cdot\cdot\cdot \\ | |
\sum_{n = 1}^{\infty}\left(-1\right)^n\frac{1}{n} = \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \frac{1}{5} - \cdot\cdot\cdot \\ | |
\sum_{n = 1}^{\infty}\left(-1\right)^n\frac{1}{n} = \frac{1}{2} - \frac{1}{4} + \frac{1}{6}- \cdot\cdot\cdot \\ | |
\sum_{n = 1}^{\infty}\left(-1\right)^n\frac{1}{n} = \frac{1}{2} \left( \frac{1}{1} - \frac{1}{2} + \frac{1}{3}-\cdot\cdot\cdot\right) = \frac{1}{2}\ln 2\\ | |
</script></p> | |
<h2 id="第六節">第六節</h2> | |
<h3 id="比例測試ratio-test">比例測試(Ratio Test)</h3> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1215"> | |
\lim_{n \to \infty} \left\lvert \frac{a_{n+1}}{a_n} \right\rvert \lt 1 \implies \sum a_n \text{ converges absolutely} \\ | |
\lim_{n \to \infty} \left\lvert \frac{a_{n+1}}{a_n} \right\rvert \gt 1 \implies \sum a_n \text{ diverges} \\ | |
\lim_{n \to \infty} \left\lvert \frac{a_{n+1}}{a_n} \right\rvert = 1 \text{ draws no conclusion} | |
</script></p> | |
<h4 id="範例-3">範例</h4> | |
<p>檢查 <script type="math/tex" id="MathJax-Element-1216">\sum _ {n = 0} ^ {\infty} {\frac{2^n}{n!}}</script> 收斂性:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1217"> | |
a_n = \frac{2^n}{n!} \\ | |
a_{n + 1} = \frac{2 \times 2^n}{\left( n + 1 \right) n! } \\ | |
\lim_{n \to \infty} {2 \over {n + 1}} = 0 | |
</script></p> | |
<p>級數 <script type="math/tex" id="MathJax-Element-1218">\sum _ {n = 0} ^ {\infty} {\frac{2^n}{n!}}</script> 收斂</p> | |
<h3 id="開根測試root-test">開根測試(Root Test)</h3> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1219"> | |
\lim_{n \to \infty} \sqrt[n]{\left\lvert a_n \right\rvert} \le 1 \implies \sum a_n \text{ converges absolutely} \\ | |
\lim_{n \to \infty} \sqrt[n]{\left\lvert a_n \right\rvert} \gt 1 \implies \sum a_n \text{ diverges} \\ | |
\lim_{n \to \infty} \sqrt[n]{\left\lvert a_n \right\rvert} = 1 \text{ draws no conclusion} | |
</script></p> | |
<h4 id="範例-4">範例</h4> | |
<p>檢查 <script type="math/tex" id="MathJax-Element-1220">\sum _ {n = 0} ^ {\infty} {\frac{e^{2n}}{n^n}}</script> 收斂性:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1221"> | |
a_n = \frac{e^{2n}}{n^n} = \left( \frac{e^{2}}{n}\right) ^ n \\ | |
\lim_{n \to \infty} \sqrt[n]{\left\lvert \left( \frac{e^{2}}{n}\right) ^ n \right\rvert} = 0 | |
</script></p> | |
<p>級數 <script type="math/tex" id="MathJax-Element-1222">\sum _ {n = 0} ^ {\infty} {\frac{e^{2n}}{n^n}}</script> 收斂</p> | |
<h3 id="測試級數的方法">測試級數的方法</h3> | |
<ol> | |
<li>最後一項是否趨近 <script type="math/tex" id="MathJax-Element-1223">0</script>,若否,級數發散</li> | |
<li>級數是否特殊:幾何、p 級數、裂項和、交錯和</li> | |
<li>可以使用積分法、開根法或是比例法測試</li> | |
<li>可以與特殊級數比較</li> | |
</ol> | |
<h3 id="方法">方法</h3> | |
<p><img src="https://doc-10-4k-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mbp1/ce3t9kekl5k96360v8h7hgi1jd0ndsh6/1433880000000/15787471668676610797/*/0B2yT2KVwX0BUZjRDUDBSZmM1Z0E?e=download" alt="方法整理" title=""></p> | |
<h2 id="第七節">第七節</h2> | |
<h3 id="泰勒展開式">泰勒展開式</h3> | |
<p>將函數 <script type="math/tex" id="MathJax-Element-1224">f\left(x\right)</script> 在 <script type="math/tex" id="MathJax-Element-1225">x = c</script> 點展開:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1226"> | |
f\left(x\right) = \sum_{n = 0}^{\infty} {\frac{f^{\left(n\right)}\left(c\right)}{n!}} \left(x - c\right) ^ n | |
</script></p> | |
<h3 id="泰勒多項式趨近">泰勒多項式趨近</h3> | |
<p>若三次趨近某函數:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1227"> | |
P_3\left(x\right) = 1 + x + \frac{1}{2} x^2 + \frac{1}{3!}x^3 | |
</script></p> | |
<p>若 <script type="math/tex" id="MathJax-Element-1228">c = 0</script>,也可以稱為麥克勞林多項式(Maclaurin Polynomial)。</p> | |
<h3 id="泰勒多項式的餘式">泰勒多項式的餘式</h3> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1229"> | |
f\left(x\right) = P_n\left(x\right) + R_n\left(x\right) \\ | |
\text{Error} = \left\lvert R_n\left(x\right) \right\rvert = \left\lvert f\left(x\right) - P_n\left(x\right) \right\rvert | |
</script></p> | |
<h3 id="泰勒定理及拉格朗日於餘項">泰勒定理及拉格朗日於餘項</h3> | |
<p>若函數 <script type="math/tex" id="MathJax-Element-1230">f\left(x\right)</script> 可在一個包含 <script type="math/tex" id="MathJax-Element-1231">c</script> 的區間 <script type="math/tex" id="MathJax-Element-1232">I</script> 被微分 <script type="math/tex" id="MathJax-Element-1233">n + 1</script> 次,則對於區間 <script type="math/tex" id="MathJax-Element-1234">I</script> 內的每一個 <script type="math/tex" id="MathJax-Element-1235">x</script>,存在一個 <script type="math/tex" id="MathJax-Element-1236">z</script> 介於 <script type="math/tex" id="MathJax-Element-1237">c</script> 以及 <script type="math/tex" id="MathJax-Element-1238">x</script> 之間符合:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1239"> | |
f(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \cdot\cdot\cdot + \frac{f^{(n)}(c)}{n!}(x-c)^n + R_n(x) \\ | |
R_n(x) = \frac{f^{n+1}(z)}{(n+1)!}(x-c)^{n+1} | |
</script></p> | |
<p>經過推導:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1240"> | |
\left\lvert R_n(x) \right\rvert \le \frac{\lvert x-c\rvert ^ {n+1}}{(n+1)!} \text{ max } \left\lvert f^{n+1}(z) \right\rvert | |
</script></p> | |
<p>若 <script type="math/tex" id="MathJax-Element-1241">n = 0</script>,可得均值定理。</p> | |
<h2 id="第八章">第八章</h2> | |
<h3 id="冪級數">冪級數</h3> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1242"> | |
\sum_{0}^{\infty} a_nx^n \\ | |
\sum_{0}^{\infty} a_n(x-c)^n | |
</script></p> | |
<p>後者稱為中心在 <script type="math/tex" id="MathJax-Element-1243">c</script> 的級數。</p> | |
<h3 id="收斂區間及收斂半徑radius-and-interval-of-convergence">收斂區間及收斂半徑(Radius and Interval of Convergence)</h3> | |
<p>冪級數 <script type="math/tex" id="MathJax-Element-1244">f(x) = \sum_{0}^{\infty} a_n(x-c)^n</script> 的收斂有三種可能:</p> | |
<ol> | |
<li>當 <script type="math/tex" id="MathJax-Element-1245">x = c</script> 收斂</li> | |
<li>存在一個 <script type="math/tex" id="MathJax-Element-1246">R > 0</script> 使得 <script type="math/tex" id="MathJax-Element-1247">\lvert x - c \rvert < R</script> 時收斂,<script type="math/tex" id="MathJax-Element-1248">\lvert x - c \rvert > R</script> 時發散</li> | |
<li><script type="math/tex" id="MathJax-Element-1249">x</script> 為任意數皆收斂</li> | |
</ol> | |
<h4 id="範例一-3">範例一</h4> | |
<p>檢查 <script type="math/tex" id="MathJax-Element-1250">f(x) = \sum_{0}^{\infty} n!x^n</script> 的收斂性:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1251"> | |
f(x) = \sum_{0}^{\infty} n!x^n = \sum_{0}^{\infty} n!(x-0)^n \\ | |
f(0) = 1 \text{ ... Converges at } x = 0 \\ | |
\lim_{n \to \infty} \left\lvert \frac{(n+1)!x^{n+1}}{n!x^n} \right\rvert = \lvert x \rvert \lim_{n \to \infty} (n + 1) = \infty | |
</script></p> | |
<p>當 <script type="math/tex" id="MathJax-Element-1252"> x = 0 </script> 時收斂,半徑 <script type="math/tex" id="MathJax-Element-1253">0</script>。</p> | |
<h4 id="範例二-3">範例二</h4> | |
<p>檢查 <script type="math/tex" id="MathJax-Element-1254">f(x) = \sum_{0}^{\infty} 3(x-2)^n</script> 的收斂性:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1255"> | |
\lim_{n \to \infty} \left\lvert \frac{3(x-2)^{n+1}}{3(x-2)^n} \right\rvert = \lvert x - 2 \rvert | |
</script></p> | |
<p>當 <script type="math/tex" id="MathJax-Element-1256">\lvert x - 2 \rvert \lt 1</script> 收斂,半徑 <script type="math/tex" id="MathJax-Element-1257">1</script>。</p> | |
<h3 id="極點收斂性">極點收斂性</h3> | |
<p>兩個極點的收斂性有可能不一樣,必須分開檢查:</p> | |
<p>收斂區間 <script type="math/tex" id="MathJax-Element-1258">[-1, 1)</script> 表示 <script type="math/tex" id="MathJax-Element-1259">x = -1</script> 時收斂,<script type="math/tex" id="MathJax-Element-1260">x = 1</script> 時發散。</p> | |
<h3 id="冪級數的微分與積分">冪級數的微分與積分</h3> | |
<p>對於 <script type="math/tex" id="MathJax-Element-1261">f(x) = \sum_{0}^{\infty} a_n(x-c)^n</script> 且當收斂半徑 <script type="math/tex" id="MathJax-Element-1262">R > 0</script> 表示在區間 <script type="math/tex" id="MathJax-Element-1263">(c - R, c + R)</script> 是可微的:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1264"> | |
f'(x) = \sum_{n=1}^{\infty} na_n(x-c)^{n-1} \\ | |
\int f(x)dx = C + \sum_{n=0}^{\infty} a_n \frac{(x-c)^{n+1}}{n + 1} | |
</script></p> | |
<h2 id="第九節">第九節</h2> | |
<h3 id="幾何冪級數">幾何冪級數</h3> | |
<p>因為 <br> | |
<script type="math/tex; mode=display" id="MathJax-Element-1265"> | |
\sum_{n = 0}^{\infty} ar^n = \frac{a}{1-r} , \quad 0 < \lvert r \rvert < 1 | |
</script></p> | |
<p>我們可以改寫</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1266"> | |
\frac{1}{1-x} = \sum_{n = 0}^{\infty} ar^n = \sum_{n = 0}^{\infty} x^n = 1 + x + x^2 + \cdot\cdot\cdot, \; \lvert x\rvert < 1 | |
</script></p> | |
<p>或是</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1267"> | |
\frac{1}{1-x} = \frac{1}{2-(x+1)} = \frac{12}{1-[(x+1)/2]} = \frac{a}{1-r} \\ | |
\frac{1}{1-x} = \sum_{n=0}^{\infty} \frac{1}{2} \left( \frac{x + 1}{2} \right) ^ n, \; \lvert x + 1 \rvert < 2 | |
</script></p> | |
<h4 id="範例一-4">範例一</h4> | |
<p>找出 <script type="math/tex" id="MathJax-Element-1268">f(x) = \frac{4}{x+2}</script> 中心在 <script type="math/tex" id="MathJax-Element-1269">0</script> 的幾何級數:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1270"> | |
\frac{4}{2 + x} = \frac{2}{1-(-x/2)} = \frac{a}{1-r} \\ | |
a = 2 \\ | |
r = - \frac{x}{2} \\ | |
\frac{4}{x + 2} = \sum_{n = 0}^{\infty}ar^n = \sum_{n = 0}^{\infty}2\left( - \frac{x}{2}\right)^n \\ | |
\left\lvert \frac{x}{2} \right\rvert < 1 | |
</script></p> | |
<h4 id="範例二-4">範例二</h4> | |
<p>找出 <script type="math/tex" id="MathJax-Element-1271">f(x) = \frac{1}{x}</script> 中心在 <script type="math/tex" id="MathJax-Element-1272">1</script> 的幾何級數:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1273"> | |
f(x) = \frac{1}{x} = \frac{1}{1-(1-x)} = \frac{a}{1-r} \\ | |
a = 1 \\ | |
r = 1 - x \\ | |
\frac{1}{x} = \sum_{n = 0}^{\infty} (1-x)^n = \sum_{n = 0}^{\infty} (-1)^n(x-1)^n \\ | |
\frac{1}{x} = 1 - (x - 1) + (x - 1)^2 - (x - 1)^3 + \cdot\cdot\cdot \\ | |
\text{Converges when } \left\lvert x - 1 \right\rvert \lt 1 | |
</script></p> | |
<h3 id="冪級數的操作">冪級數的操作</h3> | |
<p>若兩個冪級數相加,則結果的收斂區間為他們的聯集。</p> | |
<h4 id="範例-5">範例</h4> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1274"> | |
f(x) = \frac{3x - 1}{x^2 - 1} = \frac{2}{x + 1} + \frac{1}{x - 1} \\ | |
\frac{2}{x + 1} = \frac{2}{1-(-x)} = \sum_{n = 0}^{\infty}2(-1)^nx^n , \; \lvert x \rvert < 1 \\ | |
\frac{1}{x - 1} = \frac{-1}{1-x} = - \sum_{n = 0}^{\infty} x^n , \; \lvert x \rvert < 1 | |
</script></p> | |
<h3 id="用積分找冪級數">用積分找冪級數</h3> | |
<p>找 <script type="math/tex" id="MathJax-Element-1275">\arctan x</script> 的冪級數表示法:</p> | |
<p>因為 <script type="math/tex" id="MathJax-Element-1276">{d\arctan{x} \over dx} = {1 \over 1+x^2}</script>,所以我們這樣寫:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1277"> | |
f(x) = {1 \over 1 + x} \\ | |
f(x^2) = {1 \over 1 + x^2} \\ | |
\arctan x = \int {1 \over 1 + x^2} dx + C \\ | |
\arctan x = \sum_{n = 0}^{\infty} (-1)^n {x^{2n + 1} \over 2n + 1} | |
</script></p> | |
<h3 id="用級數找-pi">用級數找 <script type="math/tex" id="MathJax-Element-1278">\pi</script></h3> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1279"> | |
\pi = 4\left( 4\arctan {1 \over 5} - \arctan {1 \over 239} \right) | |
</script></p> | |
<p>若趨近五項,可得 <script type="math/tex" id="MathJax-Element-1280">\pi \approx 3.1415926</script></p> | |
<h2 id="第十節">第十節</h2> | |
<h3 id="泰勒及麥克勞林級數">泰勒及麥克勞林級數</h3> | |
<p>若 <script type="math/tex" id="MathJax-Element-1281">f(x) = \sum a_n (x - c)^n</script> 對於一個包含 <script type="math/tex" id="MathJax-Element-1282">c</script> 的區間 <script type="math/tex" id="MathJax-Element-1283">I</script> 中的所有 <script type="math/tex" id="MathJax-Element-1284">x</script> 皆成立,則:</p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1285"> | |
a_n = {f^{(n)}(c) \over n!} \\ | |
f(x) = f(c) + f'(c)(x-c) + {f''(c) \over 2!}(x-c)^2 + \cdot\cdot\cdot | |
</script></p> | |
<h4 id="證明-1">證明</h4> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1286"> | |
f^{(0)}(x) = a_0 + a_1(x - c) + a_2(x - c)^2 + \cdot\cdot\cdot \\ | |
f^{(1)}(x) = a_1 + 2a_2(x - c) + 3a_3(x - c)^2 + \cdot\cdot\cdot \\ | |
f^{(2)}(x) = 2a_2 + 3!a_3(x - c) + 4 \times 3a_3(x - c)^2 + \cdot\cdot\cdot \\ | |
f^{(n)}(x) = n!a_n + (n + 1)!a_{n+1}(x-c) + \cdot\cdot\cdot | |
</script></p> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1287"> | |
f^{(0)}(x) = 0!a_0 \\ | |
f^{(1)}(x) = 1!a_1 \\ | |
f^{(2)}(x) = 2!a_2 \\ | |
f^{(3)}(x) = 3!a_3 \\ | |
f^{(n)}(x) = n!a_n | |
</script></p> | |
<p>同樣的,若 <script type="math/tex" id="MathJax-Element-1288">c = 0</script>,就成為麥克勞林級數。</p> | |
<h3 id="泰勒級數的收斂性">泰勒級數的收斂性</h3> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1289"> | |
\lim R_n = 0 \text{ for all $x$ in the interval $I$} \\ | |
f(x) = \sum_{n = 0}^{\infty} {f^{(n)}(c) \over n!} (x - c)^n | |
</script></p> | |
<h4 id="證明-2">證明</h4> | |
<p><script type="math/tex; mode=display" id="MathJax-Element-1290"> | |
P_n(x) = f(x) - R_n(x) \\ | |
\lim_{n \to \infty} S_n(x) = \lim_{n \to \infty} P_n(x) = f(x) - \lim_{n \to \infty} R_n(x) = f(x) | |
</script></p> | |
<h4 id="範例一-5">範例一</h4></div></body> | |
</html> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment