Skip to content

Instantly share code, notes, and snippets.

@shashankvemuri
Created July 6, 2020 03:32
Show Gist options
  • Select an option

  • Save shashankvemuri/57fcce5fabfed87bd83cdef5d93efee9 to your computer and use it in GitHub Desktop.

Select an option

Save shashankvemuri/57fcce5fabfed87bd83cdef5d93efee9 to your computer and use it in GitHub Desktop.
train the model and get the predictions
#build LSTM model
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=(x_train.shape[1],1)))
model.add(LSTM(50,return_sequences=False))
model.add(Dense(25))
model.add(Dense(1))
#compile the model
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy'])
#train the model
model.fit(x_train, y_train, batch_size=1, epochs=5)
#create test dataset
test_data = scaled_data[train_data_len-60:, :]
#create dataset x_test, y_test
x_test = []
y_test = dataset[train_data_len:, :]
for i in range(60,len(test_data)):
x_test.append(test_data[i-60:i, 0])
#convert data to numpy array
x_test = np.array(x_test)
#reshape the data
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
#get the models predicted price values
predictions = model.predict(x_test)
predictions = scaler.inverse_transform(predictions)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment