Last active
September 7, 2022 15:19
-
-
Save shashankvemuri/66de000153d5a9d3dea15aef7c86043e to your computer and use it in GitHub Desktop.
The beginning of the screener
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Index Returns | |
index_df = pdr.get_data_yahoo(index_name, start_date, end_date) | |
index_df['Percent Change'] = index_df['Adj Close'].pct_change() | |
index_return = (index_df['Percent Change'] + 1).cumprod()[-1] | |
# Find top 30% performing stocks (relative to the S&P 500) | |
for ticker in tickers: | |
# Download historical data as CSV for each stock (makes the process faster) | |
df = pdr.get_data_yahoo(ticker, start_date, end_date) | |
df.to_csv(f'{ticker}.csv') | |
# Calculating returns relative to the market (returns multiple) | |
df['Percent Change'] = df['Adj Close'].pct_change() | |
stock_return = (df['Percent Change'] + 1).cumprod()[-1] | |
returns_multiple = round((stock_return / index_return), 2) | |
returns_multiples.extend([returns_multiple]) | |
print (f'Ticker: {ticker}; Returns Multiple against S&P 500: {returns_multiple}\n') | |
time.sleep(1) | |
# Creating dataframe of only top 30% | |
rs_df = pd.DataFrame(list(zip(tickers, returns_multiples)), columns=['Ticker', 'Returns_multiple']) | |
rs_df['RS_Rating'] = rs_df.Returns_multiple.rank(pct=True) * 100 | |
rs_df = rs_df[rs_df.RS_Rating >= rs_df.RS_Rating.quantile(.70)] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
latest pip version breaks the code.
Solution is found here:
ranaroussi/yfinance#937