Created
August 4, 2020 17:54
-
-
Save shashankvemuri/a69bcea8f7053a391158b29322f666c7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import yfinance as yf | |
import datetime as dt | |
import warnings | |
import talib | |
import pandas as pd | |
import time | |
from yahoo_fin import stock_info as si | |
from scipy.stats import zscore | |
import numpy as np | |
warnings.filterwarnings("ignore") | |
yf.pdr_override() | |
pd.set_option('display.max_columns', None) | |
ticker = input('Enter a ticker: ') | |
num_of_years = float(input('Enter the number of years: ')) | |
start = dt.date.today() - dt.timedelta(days = int(365.25 * num_of_years)) | |
end = dt.date.today() | |
tickers = [f'{ticker}'] | |
spy = yf.download('SPY',start,end, interval='1d') | |
spy['RSI'] = talib.RSI(spy['Adj Close'], timeperiod=14) | |
for symbol in tickers: | |
# Read df | |
df = yf.download(symbol,start,end, interval='1d') | |
# Bollinger Bands | |
df['upper_band'], df['middle_band'], df['lower_band'] = talib.BBANDS(df['Adj Close'], timeperiod=14) | |
df['macd'], df['macdsignal'], df['macdhist'] = talib.MACD(df['Adj Close'], fastperiod=12, slowperiod=26, signalperiod=9) | |
df['RSI'] = talib.RSI(df['Adj Close'], timeperiod=14) | |
df['Momentum'] = talib.MOM(df['Adj Close'], timeperiod=14) | |
df['Z-Score'] = zscore(df['Adj Close']) | |
df['BBANDS_Position'] = None | |
df['MACD_Position'] = None | |
df['rsiPos'] = None | |
df['spy_rsiPos'] = None | |
df['zPos'] = None | |
df['momentumPos'] = None | |
for row in range(len(df)): | |
if (df['Adj Close'].iloc[row] > df['upper_band'].iloc[row]) and (df['Adj Close'].iloc[row-1] < df['upper_band'].iloc[row-1]): | |
df['BBANDS_Position'].iloc[row] = -1 | |
elif (df['Adj Close'].iloc[row] < df['lower_band'].iloc[row]) and (df['Adj Close'].iloc[row-1] > df['lower_band'].iloc[row-1]): | |
df['BBANDS_Position'].iloc[row] = 1 | |
else: | |
df['BBANDS_Position'].iloc[row] = 0 | |
if (df['macd'].iloc[row] > df['macdsignal'].iloc[row]): | |
df['MACD_Position'].iloc[row] = 1 | |
elif (df['macd'].iloc[row] < df['macdsignal'].iloc[row]): | |
df['MACD_Position'].iloc[row] = -1 | |
else: | |
df['MACD_Position'].iloc[row] = 0 | |
if (df['RSI'].iloc[row] < 30): | |
df['rsiPos'].iloc[row] = 1 | |
elif (df['RSI'].iloc[row] > 70): | |
df['rsiPos'].iloc[row] = -1 | |
else: | |
df['rsiPos'].iloc[row] = 0 | |
if (spy['RSI'].iloc[row] < 30): | |
df['spy_rsiPos'].iloc[row] = 1 | |
elif (spy['RSI'].iloc[row] > 70): | |
df['spy_rsiPos'].iloc[row] = -1 | |
else: | |
df['spy_rsiPos'].iloc[row] = 0 | |
if (df['Z-Score'].iloc[row] >= -1.5): | |
df['zPos'].iloc[row] = 1 | |
else: | |
df['zPos'].iloc[row] = 0 | |
if (df['Momentum'].iloc[row] > -0.2): | |
df['momentumPos'].iloc[row] = 1 | |
elif (df['Momentum'].iloc[row] < 0.1): | |
df['momentumPos'].iloc[row] = -1 | |
else: | |
df['momentumPos'].iloc[row] = 0 | |
position=0 # 1 means we have already entered poistion, 0 means not already entered | |
counter=0 | |
percentChange=[] # empty list to collect %changes | |
df = df.iloc[33:] | |
spy = spy.iloc[33:] | |
for i in df.index: | |
bbandsPos=df['BBANDS_Position'] | |
macdPos=df['MACD_Position'] | |
rsiPos = df['rsiPos'] | |
rsi_spy = df['spy_rsiPos'] | |
momentumPos = df['momentumPos'] | |
zPos = df['zPos'] | |
close=df['Adj Close'][i] | |
if(((bbandsPos[i] == 1) and (rsiPos[i]==1) and (rsi_spy[i] != 1))): | |
if(position==0): | |
buyP=close #buy price | |
position=1 # turn position | |
elif(((momentumPos[i] == 1) and (zPos[i]==1) and (macdPos[i] == 1))): | |
if(position==0): | |
buyP=close #buy price | |
position=1 # turn position | |
elif(((bbandsPos[i] == -1) and (rsiPos[i]==-1) and (rsi_spy[i]!= -1))): | |
if(position==1): # have a poistion in down trend | |
position=0 # selling position | |
sellP=close # sell price | |
perc=(sellP/buyP-1)*100 | |
percentChange.append(perc) | |
elif(((momentumPos[i]==-1) and (macdPos[i] == -1))): | |
if(position==1): # have a poistion in down trend | |
position=0 # selling position | |
sellP=close # sell price | |
perc=(sellP/buyP-1)*100 | |
percentChange.append(perc) | |
if(counter==df["Adj Close"].count()-1 and position==1): | |
position=0 | |
sellP=close | |
perc=(sellP/buyP-1)*100 | |
percentChange.append(perc) | |
counter+=1 | |
gains=0 | |
numGains=0 | |
losses=0 | |
numLosses=0 | |
totReturn=1 | |
for i in percentChange: | |
if(i>0): | |
gains+=i | |
numGains+=1 | |
else: | |
losses+=i | |
numLosses+=1 | |
totReturn = totReturn*((i/100)+1) | |
totReturn=round((totReturn-1)*100,2) | |
print("These statistics are from "+str(start)+" up till now with "+str(numGains+numLosses)+" trades:") | |
print("Total return over "+str(numGains+numLosses)+ " trades: "+ str(totReturn)+"%") | |
if (numGains>0): | |
avgGain=gains/numGains | |
maxReturn= str(max(percentChange)) | |
else: | |
avgGain=0 | |
maxReturn=np.nan | |
if(numLosses>0): | |
avgLoss=losses/numLosses | |
maxLoss=str(min(percentChange)) | |
ratioRR=str(-avgGain/avgLoss) # risk-reward ratio | |
else: | |
avgLoss=0 | |
maxLoss=np.nan | |
ratioRR='inf' | |
df['PC'] = df['Close'].pct_change() | |
hold = round(df['PC'].sum() * 100, 2) | |
print ("Total return for a B&H strategy: " + str(hold)+'%') | |
print("Average Gain: "+ str(round(avgGain, 2))) | |
print("Average Loss: "+ str(round(avgLoss, 2))) | |
print("Max Return: "+ str(maxReturn)) | |
print("Max Loss: "+ str(maxLoss)) | |
print("Gain/loss ratio: "+ str(ratioRR)) | |
if(numGains>0 or numLosses>0): | |
batAvg=numGains/(numGains+numLosses) | |
else: | |
batAvg=0 | |
print("Batting Avg: "+ str(batAvg)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment