Last active
November 27, 2017 13:03
-
-
Save shashi/a95a21f61a5fcf8812f8d0705b4e527f to your computer and use it in GitHub Desktop.
JuliaDB benchmarks vs Pandas
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using IndexedTables | |
using PooledArrays | |
using BenchmarkTools | |
#key() = randstring(10) | |
key() = rand() | |
key1 = [key() for i=1:8000] | |
key2 = [key() for i=1:8000] | |
cs = columns(convert(Columns, rand(collect(zip(key1, key2)), 80000))) | |
#cs = map(PooledArray, cs) | |
# 80k keys with 8k uniques | |
t = table(cs..., rand(1:10^6, 80000)) | |
key1tail = [key() for i=1:2000] | |
key2tail = [key() for i=1:2000] | |
# 8k keys, 6k are from larger table | |
cs = (vcat(key1[1:6000], key1tail), vcat(key2[1:6000], key2tail)) | |
smallt = table(cs..., rand(8000)) | |
y=@btime innerjoin(t, smallt, lkey=(1,2), rkey=(1,2), cache=false) | |
z=@btime outerjoin(t, smallt, lkey=(1,2), rkey=(1,2), cache=false) | |
x=@btime leftjoin(t, smallt, lkey=(1,2), rkey=(1,2), cache=false) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# original script by Wes McKinney | |
import random | |
import gc | |
import time | |
from pandas import * | |
from pandas.compat import range, lrange, StringIO | |
#from pandas.util.testing import rands | |
from random import random | |
N = 10000 | |
ngroups = 10 | |
def get_test_data(ngroups=100, n=N): | |
unique_groups = lrange(ngroups) | |
arr = np.asarray(np.tile(unique_groups, n / ngroups), dtype=object) | |
if len(arr) < n: | |
arr = np.asarray(list(arr) + unique_groups[:n - len(arr)], | |
dtype=object) | |
random.shuffle(arr) | |
return arr | |
# aggregate multiple columns | |
# df = DataFrame({'key1' : get_test_data(ngroups=ngroups), | |
# 'key2' : get_test_data(ngroups=ngroups), | |
# 'data1' : np.random.randn(N), | |
# 'data2' : np.random.randn(N)}) | |
# df2 = DataFrame({'key1' : get_test_data(ngroups=ngroups, n=N//10), | |
# 'key2' : get_test_data(ngroups=ngroups//2, n=N//10), | |
# 'value' : np.random.randn(N // 10)}) | |
# result = merge.merge(df, df2, on='key2') | |
N = 10000 | |
indices = np.array([random() for _ in range(N)], dtype='O') | |
indices2 = np.array([random() for _ in range(N)], dtype='O') | |
key = np.tile(indices[:8000], 10) | |
key2 = np.tile(indices2[:8000], 10) | |
left = DataFrame({'key': key, 'key2': key2, | |
'value': np.random.randn(80000)}) | |
right = DataFrame({'key': indices[2000:], 'key2': indices2[2000:], | |
'value2': np.random.randn(8000)}) | |
right2 = right.append(right, ignore_index=True) | |
join_methods = ['inner', 'outer', 'left', 'right'] | |
results = DataFrame(index=join_methods, columns=[False, True]) | |
niter = 10 | |
print left | |
print right | |
for sort in [False, True]: | |
for join_method in join_methods: | |
elapsed = 1.0 | |
print len(left), len(right) | |
f = lambda: merge(left, right, how=join_method, sort=sort) | |
gc.disable() | |
start = time.time() | |
for _ in range(niter): | |
f() | |
elapsed = min(elapsed, (time.time() - start)/niter) | |
gc.enable() | |
results[sort][join_method] = elapsed | |
# results.columns = ['pandas'] | |
results.columns = ['dont_sort', 'sort'] | |
# R results | |
# many to one | |
r_results = read_table(StringIO(""" base::merge plyr data.table | |
inner 0.2475 0.1183 0.1100 | |
outer 0.4213 0.1916 0.2090 | |
left 0.2998 0.1188 0.0572 | |
right 0.3102 0.0536 0.0376 | |
"""), sep='\s+') | |
presults = results[['dont_sort']].rename(columns={'dont_sort': 'pandas'}) | |
all_results = presults.join(r_results) | |
print all_results | |
all_results = all_results.div(all_results['pandas'], axis=0) | |
all_results = all_results.ix[:, ['pandas', 'data.table', 'plyr', | |
'base::merge']] | |
sort_results = DataFrame.from_items([('pandas', results['sort']), | |
('R', r_results['base::merge'])]) | |
sort_results['Ratio'] = sort_results['R'] / sort_results['pandas'] | |
nosort_results = DataFrame.from_items([('pandas', results['dont_sort']), | |
('R', r_results['base::merge'])]) | |
nosort_results['Ratio'] = nosort_results['R'] / nosort_results['pandas'] | |
# many to many | |
# many to one | |
r_results = read_table(StringIO("""base::merge plyr data.table | |
inner 0.4610 0.1276 0.1269 | |
outer 0.9195 0.1881 0.2725 | |
left 0.6559 0.1257 0.0678 | |
right 0.6425 0.0522 0.0428 | |
"""), sep='\s+') | |
all_results = presults.join(r_results) | |
all_results = all_results.div(all_results['pandas'], axis=0) | |
all_results = all_results.ix[:, ['pandas', 'data.table', 'plyr', | |
'base::merge']] | |
print all_results |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Benchmarks\n", | |
"\n", | |
"`loadtable` vs `pandas.read_csv`" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Metadata for 0 / 1 files can be loaded from cache.\n", | |
"Reading 1 csv files totalling 1.591 GiB in 1 batches...\n", | |
"Metadata for 0 / 1 files can be loaded from cache.\n", | |
"Reading 1 csv files totalling 1.591 GiB in 1 batches...\n", | |
"Metadata for 0 / 1 files can be loaded from cache.\n", | |
"Reading 1 csv files totalling 1.591 GiB in 1 batches...\n", | |
"Metadata for 0 / 1 files can be loaded from cache.\n", | |
"Reading 1 csv files totalling 1.591 GiB in 1 batches...\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"BenchmarkTools.Trial: \n", | |
" memory estimate: 6.81 GiB\n", | |
" allocs estimate: 32738330\n", | |
" --------------\n", | |
" minimum time: 16.809 s (7.50% GC)\n", | |
" median time: 16.809 s (7.50% GC)\n", | |
" mean time: 16.809 s (7.50% GC)\n", | |
" maximum time: 16.809 s (7.50% GC)\n", | |
" --------------\n", | |
" samples: 1\n", | |
" evals/sample: 1" | |
] | |
}, | |
"execution_count": 1, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"using JuliaDB, BenchmarkTools\n", | |
"\n", | |
"benchmarks = Dict()\n", | |
"\n", | |
"benchmarks[\"JuliaDB.loadtable (DateTime)\"] =\n", | |
" @benchmark loadtable([\"data/yellow_tripdata_2016-01.csv\"],\n", | |
" usecache=false)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"using PyCall\n", | |
"@pyimport pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"BenchmarkTools.Trial: \n", | |
" memory estimate: 2.36 KiB\n", | |
" allocs estimate: 53\n", | |
" --------------\n", | |
" minimum time: 32.873 s (0.00% GC)\n", | |
" median time: 32.873 s (0.00% GC)\n", | |
" mean time: 32.873 s (0.00% GC)\n", | |
" maximum time: 32.873 s (0.00% GC)\n", | |
" --------------\n", | |
" samples: 1\n", | |
" evals/sample: 1" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"benchmarks[\"pandas.read_csv (DateTime)\"] =\n", | |
" @benchmark pd.read_csv(\n", | |
" \"data/yellow_tripdata_2016-01.csv\",\n", | |
" parse_dates=[\"tpep_pickup_datetime\", \"tpep_dropoff_datetime\"],\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"collapsed": true | |
}, | |
"source": [ | |
"By default pandas reads datetime fields as string\n", | |
"\n", | |
"```julia\n", | |
"julia> df = pd.read_csv(\"data/yellow_tripdata_2016-01.csv\")\n", | |
"julia> typeof(df[:tpep_pickup_datetime][1])\n", | |
"String\n", | |
"```\n", | |
"\n", | |
"But you can specify `parse_dates` to parse them as dates\n", | |
"```julia\n", | |
"julia> df2 = pd.read_csv(\"data/yellow_tripdata_2016-01.csv\", parse_dates=[\"tpep_pickup_datetime\", \"tpep_dropoff_datetime\"]);\n", | |
"julia> typeof(df2[:tpep_pickup_datetime][1])\n", | |
"DateTime\n", | |
"```" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"BenchmarkTools.Trial: \n", | |
" memory estimate: 528 bytes\n", | |
" allocs estimate: 18\n", | |
" --------------\n", | |
" minimum time: 29.649 s (0.00% GC)\n", | |
" median time: 29.649 s (0.00% GC)\n", | |
" mean time: 29.649 s (0.00% GC)\n", | |
" maximum time: 29.649 s (0.00% GC)\n", | |
" --------------\n", | |
" samples: 1\n", | |
" evals/sample: 1" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"benchmarks[\"pandas.read_csv (string)\"] = @benchmark pd.read_csv(\"data/yellow_tripdata_2016-01.csv\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Metadata for 0 / 1 files can be loaded from cache.\n", | |
"Reading 1 csv files totalling 1.591 GiB in 1 batches...\n", | |
"Metadata for 0 / 1 files can be loaded from cache.\n", | |
"Reading 1 csv files totalling 1.591 GiB in 1 batches...\n", | |
"Metadata for 0 / 1 files can be loaded from cache.\n", | |
"Reading 1 csv files totalling 1.591 GiB in 1 batches...\n", | |
"Metadata for 0 / 1 files can be loaded from cache.\n", | |
"Reading 1 csv files totalling 1.591 GiB in 1 batches...\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"BenchmarkTools.Trial: \n", | |
" memory estimate: 7.14 GiB\n", | |
" allocs estimate: 32742077\n", | |
" --------------\n", | |
" minimum time: 18.083 s (13.41% GC)\n", | |
" median time: 18.083 s (13.41% GC)\n", | |
" mean time: 18.083 s (13.41% GC)\n", | |
" maximum time: 18.083 s (13.41% GC)\n", | |
" --------------\n", | |
" samples: 1\n", | |
" evals/sample: 1" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"benchmarks[\"JuliaDB.loadtable (string)\"] = @benchmark loadtable(\n", | |
" [\"data/yellow_tripdata_2016-01.csv\"],\n", | |
" usecache=false,\n", | |
" colparsers=Dict(2=>String, 3=>String)\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Results:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Dict{Any,Any} with 1 entry:\n", | |
" \"JuliaDB.loadtable (string)\" => Trial(18.083 s)" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"benchmarks" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"BenchmarkTools.Trial: \n", | |
" memory estimate: 6.81 GiB\n", | |
" allocs estimate: 32738330\n", | |
" --------------\n", | |
" minimum time: 16.809 s (7.50% GC)\n", | |
" median time: 16.809 s (7.50% GC)\n", | |
" mean time: 16.809 s (7.50% GC)\n", | |
" maximum time: 16.809 s (7.50% GC)\n", | |
" --------------\n", | |
" samples: 1\n", | |
" evals/sample: 1" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"benchmarks[\"JuliaDB.loadtable (DateTime)\"] = Out[1]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"BenchmarkTools.Trial: \n", | |
" memory estimate: 528 bytes\n", | |
" allocs estimate: 18\n", | |
" --------------\n", | |
" minimum time: 29.649 s (0.00% GC)\n", | |
" median time: 29.649 s (0.00% GC)\n", | |
" mean time: 29.649 s (0.00% GC)\n", | |
" maximum time: 29.649 s (0.00% GC)\n", | |
" --------------\n", | |
" samples: 1\n", | |
" evals/sample: 1" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"benchmarks[\"pandas.read_csv (string)\"] = Out[4]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Dict{Any,Any} with 4 entries:\n", | |
" \"JuliaDB.loadtable (DateTime)\" => Trial(16.809 s)\n", | |
" \"pandas.read_csv (string)\" => Trial(29.649 s)\n", | |
" \"JuliaDB.loadtable (string)\" => Trial(18.083 s)\n", | |
" \"pandas.read_csv (DateTime)\" => Trial(32.873 s)" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"benchmarks" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 24, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Table with 4 rows, 2 columns:\n", | |
"benchmark result\n", | |
"─────────────────────────────────────\n", | |
"JuliaDB.loadtable (DateTime) 16.8086\n", | |
"pandas.read_csv (DateTime) 32.8733\n", | |
"JuliaDB.loadtable (string) 18.0826\n", | |
"pandas.read_csv (string) 29.6489" | |
] | |
}, | |
"execution_count": 24, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"ks = collect(keys(benchmarks))[[1,4,3,2]]\n", | |
"vs = map(k->benchmarks[k], ks)\n", | |
"\n", | |
"tbl = table(map(Text, ks), map(x->minimum(x).time/10e8, vs), names=[:benchmark, :result])" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Julia 0.6.0", | |
"language": "julia", | |
"name": "julia-0.6" | |
}, | |
"language_info": { | |
"file_extension": ".jl", | |
"mimetype": "application/julia", | |
"name": "julia", | |
"version": "0.6.0" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment