Skip to content

Instantly share code, notes, and snippets.

@shawwn
Created June 16, 2021 00:33
Show Gist options
  • Save shawwn/7b799fa7cf94da4346e5f85708b88543 to your computer and use it in GitHub Desktop.
Save shawwn/7b799fa7cf94da4346e5f85708b88543 to your computer and use it in GitHub Desktop.
A script to test M1 GPU training via the tensorflow-metal plugin
import tensorflow.compat.v2 as tf
import tensorflow_datasets as tfds
tf.get_logger().setLevel('DEBUG')
tf.enable_v2_behavior()
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
# from tensorflow.python.compiler.mlcompute import mlcompute
# mlcompute.set_mlc_device(device_name='gpu')
import os
os.environ['TF_MLC_DEVICE_TYPE'] = os.environ.get('TF_MLC_DEVICE_TYPE', '1')
if 'mixed_precision' and False:
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import mixed_precision
policy = mixed_precision.Policy('mixed_float16')
mixed_precision.set_global_policy(policy)
(ds_train, ds_test), ds_info = tfds.load(
'mnist',
split=['train', 'test'],
shuffle_files=True,
as_supervised=True,
with_info=True,
)
def normalize_img(image, label):
"""Normalizes images: `uint8` -> `float32`."""
return tf.cast(image, tf.float32) / 255., label
batch_size = 128
ds_train = ds_train.map(
normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds_train = ds_train.cache()
ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples)
ds_train = ds_train.batch(batch_size)
ds_train = ds_train.prefetch(tf.data.experimental.AUTOTUNE)
ds_test = ds_test.map(
normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds_test = ds_test.batch(batch_size)
ds_test = ds_test.cache()
ds_test = ds_test.prefetch(tf.data.experimental.AUTOTUNE)
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, kernel_size=(3, 3),
activation='relu'),
tf.keras.layers.Conv2D(64, kernel_size=(3, 3),
activation='relu'),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
# tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
# tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(
loss='sparse_categorical_crossentropy',
optimizer=tf.keras.optimizers.Adam(0.001),
metrics=['accuracy'],
)
model.fit(
ds_train,
epochs=4,
validation_data=ds_test,
)
"""
469/469 [==============================] - 12s 20ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.1537 - accuracy: 0.9546 - val_loss: 0.0655 - val_accuracy: 0.9785
Epoch 2/4
469/469 [==============================] - 10s 20ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0425 - accuracy: 0.9869 - val_loss: 0.0365 - val_accuracy: 0.9875
Epoch 3/4
469/469 [==============================] - 10s 20ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0268 - accuracy: 0.9919 - val_loss: 0.0427 - val_accuracy: 0.9859
Epoch 4/4
469/469 [==============================] - 10s 20ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0184 - accuracy: 0.9940 - val_loss: 0.0377 - val_accuracy: 0.9886
"""
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment