Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save sheecegardezi/8cef8a881dc90055bf4bf370df7552ea to your computer and use it in GitHub Desktop.
Save sheecegardezi/8cef8a881dc90055bf4bf370df7552ea to your computer and use it in GitHub Desktop.
class XGBQuantile(XGBRegressor):
def __init__(self,quant_alpha=0.95,quant_delta = 1.0,quant_thres=1.0,quant_var =1.0,base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
n_jobs=1, nthread=None, objective='reg:linear', random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,silent=True, subsample=1):
self.quant_alpha = quant_alpha
self.quant_delta = quant_delta
self.quant_thres = quant_thres
self.quant_var = quant_var
super().__init__(base_score=base_score, booster=booster, colsample_bylevel=colsample_bylevel,
colsample_bytree=colsample_bytree, gamma=gamma, learning_rate=learning_rate, max_delta_step=max_delta_step,
max_depth=max_depth, min_child_weight=min_child_weight, missing=missing, n_estimators=n_estimators,
n_jobs= n_jobs, nthread=nthread, objective=objective, random_state=random_state,
reg_alpha=reg_alpha, reg_lambda=reg_lambda, scale_pos_weight=scale_pos_weight, seed=seed,
silent=silent, subsample=subsample)
self.test = None
def fit(self, X, y):
super().set_params(objective=partial(XGBQuantile.quantile_loss,alpha = self.quant_alpha,delta = self.quant_delta,threshold = self.quant_thres,var = self.quant_var) )
super().fit(X,y)
return self
def predict(self,X):
return super().predict(X)
def score(self, X, y):
y_pred = super().predict(X)
score = XGBQuantile.quantile_score(y, y_pred, self.quant_alpha)
score = 1./score
return score
@staticmethod
def quantile_loss(y_true,y_pred,alpha,delta,threshold,var):
x = y_true - y_pred
grad = (x<(alpha-1.0)*delta)*(1.0-alpha)- ((x>=(alpha-1.0)*delta)& (x<alpha*delta) )*x/delta-alpha*(x>alpha*delta)
hess = ((x>=(alpha-1.0)*delta)& (x<alpha*delta) )/delta
grad = (np.abs(x)<threshold )*grad - (np.abs(x)>=threshold )*(2*np.random.randint(2, size=len(y_true)) -1.0)*var
hess = (np.abs(x)<threshold )*hess + (np.abs(x)>=threshold )
return grad, hess
@staticmethod
def original_quantile_loss(y_true,y_pred,alpha,delta):
x = y_true - y_pred
grad = (x<(alpha-1.0)*delta)*(1.0-alpha)-((x>=(alpha-1.0)*delta)& (x<alpha*delta) )*x/delta-alpha*(x>alpha*delta)
hess = ((x>=(alpha-1.0)*delta)& (x<alpha*delta) )/delta
return grad,hess
@staticmethod
def quantile_score(y_true, y_pred, alpha):
score = XGBQuantile.quantile_cost(x=y_true-y_pred,alpha=alpha)
score = np.sum(score)
return score
@staticmethod
def quantile_cost(x, alpha):
return (alpha-1.0)*x*(x<0)+alpha*x*(x>=0)
@staticmethod
def get_split_gain(gradient,hessian,l=1):
split_gain = list()
for i in range(gradient.shape[0]):
split_gain.append(np.sum(gradient[:i])/(np.sum(hessian[:i])+l)+np.sum(gradient[i:])/(np.sum(hessian[i:])+l)-np.sum(gradient)/(np.sum(hessian)+l) )
return np.array(split_gain)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment