Created
December 14, 2014 10:51
-
-
Save sherjilozair/5160b30a8d6de2e81413 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import theano | |
import numpy | |
from theano import tensor as T | |
from PIL import Image | |
import os | |
import sys | |
import gzip | |
import cPickle | |
import operator as op | |
sigmoid = T.nnet.sigmoid | |
tanh = T.tanh | |
linear = lambda x: x | |
relu = lambda x: T.maximum(x, 0) | |
softmax = T.nnet.softmax | |
class Layer: | |
def __init__(self, n_in, n_out, act): | |
self.act = act | |
self.W = self.init_weight(n_in, n_out, act) | |
self.b = self.init_bias(n_out) | |
self.params = [self.W, self.b] | |
def init_weight(self, n_in, n_out, act): | |
a = numpy.sqrt(6. / (n_in + n_out)) | |
return theano.shared(numpy.random.uniform(size=(n_in, n_out), low=-a, high=a)) | |
def init_bias(self, n_out): | |
return theano.shared(numpy.zeros(n_out,)) | |
def __call__(self, inp): | |
return self.act(T.dot(inp, self.W) + self.b) | |
class MLP: | |
def __init__(self, n_in, n_out, hls, acts): | |
self.layers = [Layer(*args) for args in zip([n_in]+hls, hls+[n_out], acts)] | |
self.params = reduce(op.add, map(lambda l: l.params, self.layers)) | |
def __call__(self, inp): | |
return reduce(lambda x, fn: fn(x), self.layers, inp) | |
class RNN: | |
def __init__(self, num_words, dim_embeddings, dimH): | |
a = numpy.sqrt(6. / (num_words + dim_embeddings)) | |
init_embeddings = numpy.random.uniform(size=(num_words, dim_embeddings), low=-a, high=a) | |
self.embeddings = theano.shared(name='embeddings', value=init_embeddings) | |
self.H0 = theano.shared(name='h0', value=numpy.zeros(dimH,)) | |
self.idxs = T.icol() | |
self.X = self.embeddings[self.idxs].reshape((self.idxs.shape[0], dim_embeddings)) | |
self.H2Z = MLP(dimH, dimH, [], [linear]) | |
self.x2Z = MLP(dim_embeddings, dimH, [], [linear]) | |
self.Z2H = MLP(dimH, dimH, [50,], [relu, linear]) | |
self.H2P = MLP(dimH, num_words, [50], [relu, softmax]) | |
def fn(x, h): | |
h = self.Z2H(self.x2Z(x) + self.H2Z(self.H0)) | |
s = self.H2P(h) | |
return [h, s] | |
[self.H, self.S], _ = theano.scan(fn=fn, sequences=self.X, outputs_info=[self.H0, None], n_steps=self.X.shape[0]) | |
self.cost = T.mean(T.nnet.categorical_crossentropy(self.S[:,0,:], self.idxs)) | |
#self.cost = T.mean(T.choose(self.idxs, -T.log(self.S[:,0,:]))) | |
self.params = [self.embeddings] + self.H2Z.params + self.x2Z.params + self.Z2H.params + self.H2P.params | |
self.grads = T.grad(self.cost, self.params) | |
self.lr = T.scalar() | |
self.updates = map(lambda (param, grad): (param, param - self.lr * grad), zip(self.params, self.grads)) | |
self.train_fn = theano.function([self.idxs, self.lr], [self.cost], updates=self.updates, allow_input_downcast=True) | |
self.f = theano.function([self.idxs], [self.H, self.S, self.cost], allow_input_downcast=True) | |
rnn = RNN(10, 10, 20) | |
idx = numpy.array([[1, 2]]).T | |
for i in xrange(1000): | |
rnn.train_fn(idx, 0.1) | |
H, S, C = rnn.f(idx) | |
print S[0, 0, :] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment