Created
February 10, 2020 18:07
-
-
Save sherjilozair/602230a0bc3ebe8ee8203b8d77ca0711 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import sonnet as snt | |
# Helper libraries | |
import numpy as np | |
import os | |
import sys | |
from absl import flags | |
from absl import app | |
flags.DEFINE_string("tpu", default=None, help="TPU name.") | |
flags.DEFINE_integer("batch_size", default=None, help="Batch size.") | |
FLAGS = flags.FLAGS | |
class Architecture(snt.AbstractModule): | |
def _build(self, inputs): | |
losses = snt.Linear(1)(tf.ones([10, 10])) | |
loss = tf.reduce_mean(losses) | |
return {'loss': loss} | |
def main(argv): | |
resolver = tf.contrib.cluster_resolver.TPUClusterResolver(tpu=FLAGS.tpu) | |
tf.contrib.distribute.initialize_tpu_system(resolver) | |
strategy = tf.contrib.distribute.TPUStrategy(resolver) | |
with strategy.scope(): | |
architecture = Architecture() | |
# optimizer = tf.train.GradientDescentOptimizer(1e-4) | |
def get_dataset(context): | |
batch_size = context.get_per_replica_batch_size(FLAGS.batch_size) | |
d = tf.data.Dataset.from_tensors([[1.]]).repeat().batch(batch_size) | |
return d.shard( | |
context.num_input_pipelines, context.input_pipeline_id) | |
iterator = strategy.make_input_fn_iterator(get_dataset) | |
iterator_init = iterator.initialize() | |
def step_fn(inputs): | |
outputs = architecture(inputs) | |
# optimizer_op = optimizer.minimize( | |
# outputs['loss'], architecture.trainable_variables) | |
with tf.control_dependencies([]): | |
return tf.identity(outputs['loss']) | |
run_values = strategy.experimental_run(step_fn, iterator).values | |
config = tf.ConfigProto() | |
config.allow_soft_placement = True | |
cluster_spec = resolver.cluster_spec() | |
if cluster_spec: | |
config.cluster_def.CopyFrom(cluster_spec.as_cluster_def()) | |
print('Starting training...') | |
# Do all the computations inside a Session (as opposed to doing eager mode) | |
with tf.Session(target=resolver.master(), config=config) as session: | |
session.run(iterator_init) | |
session.run(tf.global_variables_initializer()) | |
while True: | |
try: | |
print(session.run(run_values)) | |
except tf.errors.OutOfRangeError: | |
break | |
if __name__ == "__main__": | |
app.run(main) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment