Created
May 30, 2014 01:14
-
-
Save sherjilozair/f2c53e3e90f284726dc9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import time | |
import numpy | |
import theano | |
import theano.tensor as T | |
from pylearn2.utils import serial | |
from pylearn2.config import yaml_parse | |
def get_nll(x, parzen, batch_size=10): | |
""" | |
Credit: Yann N. Dauphin | |
""" | |
inds = range(x.shape[0]) | |
n_batches = int(numpy.ceil(float(len(inds)) / batch_size)) | |
times = [] | |
nlls = [] | |
for i in range(n_batches): | |
begin = time.time() | |
nll = parzen(x[inds[i::n_batches]]) | |
end = time.time() | |
times.append(end-begin) | |
nlls.extend(nll) | |
if i % 10 == 0: | |
print i, numpy.mean(times), numpy.mean(nlls) | |
return numpy.array(nlls) | |
def log_mean_exp(a): | |
""" | |
Credit: Yann N. Dauphin | |
""" | |
max_ = a.max(1) | |
return max_ + T.log(T.exp(a - max_.dimshuffle(0, 'x')).mean(1)) | |
def theano_parzen(mu, sigma): | |
""" | |
Credit: Yann N. Dauphin | |
""" | |
x = T.matrix() | |
mu = theano.shared(mu) | |
a = ( x.dimshuffle(0, 'x', 1) - mu.dimshuffle('x', 0, 1) ) / sigma | |
E = log_mean_exp(-0.5*(a**2).sum(2)) | |
Z = mu.shape[1] * T.log(sigma * numpy.sqrt(numpy.pi * 2)) | |
return theano.function([x], E - Z) | |
if __name__ == "__main__": | |
_, model_path = sys.argv | |
model = serial.load(model_path) | |
src = model.dataset_yaml_src | |
batch_size = 100 | |
num_samples = 10000 | |
sigma = 0.2 | |
model.set_batch_size(batch_size) | |
assert src.find('train') != -1 | |
test = yaml_parse.load(src) | |
test = test.get_test_set() | |
samples = model.generator.sample(num_samples).eval() | |
parzen = theano_parzen(samples, sigma) | |
ll = get_nll(test.X, parzen) | |
print "Log-Likelihood of test set = {}, std: {}".format(ll.mean(), ll.std()) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment