Created
February 19, 2017 12:12
-
-
Save sherjilozair/f85d39d8416bdf2d533d99a0f08866e9 to your computer and use it in GitHub Desktop.
dqn impl in 150 lines
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
import numpy as np | |
import gym | |
from scipy.misc import imresize | |
import tensorflow as tf | |
import tensorflow.contrib.slim as slim | |
class ReplayMemory: | |
def __init__(self, size=10**6, dims=(42, 42), | |
order=4, seqlen=1, mbsz=64): | |
self.size = size | |
self.order = order | |
self.seqlen = seqlen | |
self.dims = dims | |
self.mbsz = mbsz | |
self.count = self.current = 0 | |
self.totlen = self.order + self.seqlen | |
# preallocate memory | |
self.actions = np.empty(self.size, dtype = np.uint8) | |
self.rewards = np.empty(self.size, dtype = np.integer) | |
self.screens = np.empty((self.size,) + self.dims, dtype = np.uint8) | |
self.terminals = np.empty(self.size, dtype = np.bool) | |
self.indexes = np.empty((self.mbsz, self.totlen), dtype = np.integer) | |
def add(self, action, reward, screen, terminal): | |
assert screen.shape == self.dims, (screen.shape, self.dims) | |
self.actions[self.current] = action | |
self.rewards[self.current] = reward | |
self.screens[self.current, ...] = screen | |
self.terminals[self.current] = terminal | |
self.count = max(self.count, self.current + 1) | |
self.current = (self.current + 1) % self.size | |
def sample(self): | |
assert self.count > self.totlen | |
# sample random indexes | |
for j in xrange(self.mbsz): | |
# find random index | |
while True: | |
index = random.randint(self.totlen, self.count - 1) | |
if index - self.totlen < self.current <= index: | |
continue | |
if self.terminals[(index - self.totlen):index].any(): | |
continue | |
break | |
self.indexes[j, :] = (index - np.arange(self.totlen)[::-1]) % self.count | |
screens = self.screens[self.indexes] | |
states = np.array([screens[:, i:self.seqlen+1+i, ...] / 255. | |
for i in xrange(self.order)]).transpose([1, 2, 3, 4, 0]) | |
actions = self.actions[self.indexes[:, -self.seqlen-1:-1]] | |
rewards = self.rewards[self.indexes[:, -self.seqlen-1:-1]] | |
terminals = self.terminals[self.indexes[:, -self.seqlen-1:-1]] | |
return states, actions, rewards, terminals | |
class Network: | |
def __init__(self, inp_dim, out_dim, update_freq=10): | |
self.inp_dim = inp_dim | |
self.out_dim = out_dim | |
self.update_freq = update_freq | |
self.step = tf.Variable(0, name='global_step', trainable=False) | |
self.inputs = tf.placeholder(tf.float32, (None,) + self.inp_dim) | |
self.targets = tf.placeholder(tf.float32, (None, self.out_dim)) | |
self.outputs = self.build_network(self.inputs, scope='primary') | |
self.t_outputs = self.build_network(self.inputs, scope='target') | |
self.primary_weights = slim.get_variables(scope='primary') | |
self.target_weights = slim.get_variables(scope='target') | |
self.loss = tf.reduce_mean(tf.square(self.outputs - self.targets)) | |
self.opt = tf.train.AdamOptimizer(1e-4) | |
self.train_op = self.opt.minimize(self.loss, global_step=self.step, var_list=self.primary_weights) | |
self.sess = tf.InteractiveSession() | |
self.sess.run(tf.global_variables_initializer()) | |
self.update_target = tf.group(*[self.target_weights[i].assign(self.primary_weights[i]) for i in range(len(self.primary_weights))]) | |
def build_network(self, inputs, scope='scope'): | |
with tf.variable_scope(scope): | |
h = slim.conv2d(inputs, 32, [8, 8], stride=[4, 4], scope='conv1') | |
h = slim.conv2d(h, 64, [4, 4], stride=[2, 2], scope='conv2') | |
h = slim.conv2d(h, 64, [3, 3], stride=[1, 1], scope='conv3') | |
h = slim.fully_connected(slim.flatten(h), 256, scope='dense1') | |
return slim.fully_connected(h, self.out_dim, None, scope='dense2') | |
def run(self, inputs, target=False): | |
outputs = self.t_outputs if target else self.outputs | |
leading_dims = inputs.shape[:-3] | |
inputs = inputs.reshape(*((-1,) + self.inp_dim)) | |
outputs = self.sess.run(outputs, {self.inputs: inputs}) | |
return outputs.reshape(leading_dims + (self.out_dim,)).squeeze() | |
def update(self, inputs, targets): | |
_, loss, step = self.sess.run([self.train_op, self.loss, self.step], | |
{self.inputs: inputs, self.targets: targets}) | |
if step % self.update_freq == 0: | |
self.sess.run(self.update_target) | |
print loss | |
class Policy: | |
def __init__(self, dims=(42, 42), n_acts=6, order=4, gamma=0.99): | |
self.dims = dims | |
self.n_acts = n_acts | |
self.order = order | |
self.gamma = gamma | |
self.state = np.empty(self.dims+(self.order,)) | |
self.critic = Network(self.dims + (self.order,), n_acts) | |
def act(self, screen): | |
self.state[..., :-1] = self.state[..., 1:] | |
self.state[..., -1] = screen | |
values = self.critic.run(self.state, target=False) | |
action = values.argmax() | |
return action | |
def update(self, states, actions, rewards, terminals): | |
lvalues = self.critic.run(states, target=False) | |
rvalues = self.critic.run(states, target=True) | |
# assert rvalues.shape[1] == 2 # only for seqlen = 1 | |
dels = np.clip(rewards[:, 0].astype('float32'), -1., 1.) | |
dels += self.gamma * rvalues[:, 0, :].max(axis=1) # replace max with expec over policy | |
dels -= lvalues[np.arange(len(actions)), 1, actions[:, 0]] | |
target = lvalues[:, 0, :] # (mbsz, n_actions) | |
target[np.arange(len(actions)), actions] += dels | |
self.critic.update(states[:, 0, ...], target) | |
class Agent: | |
def __init__(self, env, memory, policy, iters=10**7, warmup=10**2): | |
self.iters = iters | |
self.warmup = warmup | |
self.env = env | |
self.memory = memory | |
self.policy = policy | |
def loop(self): | |
done = True | |
for i in xrange(self.iters): | |
if done: | |
self.env.reset() | |
done = False | |
screen = self.env.ale.getScreenGrayscale() | |
screen = imresize(screen.squeeze(), memory.dims) | |
action = self.policy.act(screen) | |
_, reward, done, info = self.env.step(action) | |
self.memory.add(action, reward, screen, done) | |
if i > self.warmup: | |
batch = memory.sample() | |
self.policy.update(*batch) | |
if __name__ == '__main__': | |
env = gym.make('Pong-v0') | |
memory = ReplayMemory() | |
policy = Policy() | |
agent = Agent(env, memory, policy) | |
agent.loop() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment