Last active
August 17, 2017 18:58
-
-
Save sherman/1feae823575dc86a5354a63ab9999482 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Call: | |
glm(formula = PredictValue ~ HI + BR + Vol + mday + wday, family = binomial(link = "logit"), | |
data = train, na.action = "na.exclude") | |
Deviance Residuals: | |
Min 1Q Median 3Q Max | |
-1.7719 -1.1056 -0.7567 1.1626 1.7096 | |
Coefficients: | |
Estimate Std. Error z value Pr(>|z|) | |
(Intercept) -12.91453 324.74416 -0.040 0.96828 | |
HITRUE 0.45297 0.27386 1.654 0.09813 | |
BR1 -0.27223 0.13269 -2.052 0.04021 * - brent, (close - open) | |
Vol 1.09640 0.84043 1.305 0.19204 | |
mday2 0.84098 0.54471 1.544 0.12261 | |
mday3 0.36857 0.53584 0.688 0.49156 | |
mday4 0.31662 0.54887 0.577 0.56404 | |
mday5 0.46437 0.53104 0.874 0.38187 | |
mday6 1.43370 0.55422 2.587 0.00968 ** - 6 день месяца | |
mday7 0.84815 0.54731 1.550 0.12122 | |
mday8 0.44385 0.54494 0.814 0.41536 | |
mday9 0.19402 0.54220 0.358 0.72047 | |
mday10 0.31292 0.52787 0.593 0.55331 | |
mday11 0.62069 0.53426 1.162 0.24533 | |
mday12 0.10654 0.54815 0.194 0.84589 | |
mday13 1.47491 0.55280 2.668 0.00763 ** - 13 день месяца | |
mday14 0.46868 0.53182 0.881 0.37817 | |
mday15 1.23177 0.55128 2.234 0.02546 * | |
mday16 0.75166 0.53050 1.417 0.15651 | |
mday17 0.52328 0.52849 0.990 0.32211 | |
mday18 -0.27044 0.54778 -0.494 0.62151 | |
mday19 0.26033 0.53083 0.490 0.62384 | |
mday20 0.60638 0.52809 1.148 0.25087 | |
mday21 0.74002 0.53715 1.378 0.16830 | |
mday22 0.21478 0.53953 0.398 0.69057 | |
mday23 0.26690 0.53500 0.499 0.61787 | |
mday24 0.47653 0.52774 0.903 0.36655 | |
mday25 0.18128 0.53570 0.338 0.73505 | |
mday26 -0.06555 0.53820 -0.122 0.90306 | |
mday27 -0.19334 0.54010 -0.358 0.72036 | |
mday28 0.34553 0.53205 0.649 0.51606 | |
mday29 0.42750 0.54241 0.788 0.43061 | |
mday30 0.16579 0.54032 0.307 0.75896 | |
mday31 0.43723 0.64707 0.676 0.49922 | |
wday1 12.68585 324.74393 0.039 0.96884 | |
wday2 12.63665 324.74392 0.039 0.96896 | |
wday3 12.25958 324.74391 0.038 0.96989 | |
wday4 12.59046 324.74392 0.039 0.96907 | |
wday5 12.42069 324.74391 0.038 0.96949 | |
wday6 11.73706 324.74600 0.036 0.97117 | |
--- | |
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | |
(Dispersion parameter for binomial family taken to be 1) | |
Null deviance: 1431.6 on 1032 degrees of freedom | |
Residual deviance: 1370.6 on 993 degrees of freedom | |
AIC: 1450.6 | |
Number of Fisher Scoring iterations: 1 | |
```{r} | |
result <- predict(model, train, type = "response", na.action = "na.exclude") | |
result <- ifelse(result > 0.5, 1, 0) | |
result <- as.integer(result != train$PredictValue) | |
1 - mean(result[!is.na(result)]) | |
result <- predict(model, test, type = "response", na.action = "na.exclude") | |
result <- ifelse(result > 0.5, 1, 0) | |
result <- as.integer(result !=test$PredictValue) | |
1 - mean(result[!is.na(result)]) | |
train: [1] 0.6108422 | |
test: [1] 0.5391304 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment