Created
September 13, 2015 14:44
-
-
Save shihyu/9d3e040a6c24d695952d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* DHT library | |
MIT license | |
written by Adafruit Industries | |
*/ | |
#include "DHT.h" | |
DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) { | |
_pin = pin; | |
_type = type; | |
_firstreading = true; | |
_bit = digitalPinToBitMask(pin); | |
_port = digitalPinToPort(pin); | |
_maxcycles = microsecondsToClockCycles(1000); // 1 millisecond timeout for | |
// reading pulses from DHT sensor. | |
// Note that count is now ignored as the DHT reading algorithm adjusts itself | |
// basd on the speed of the processor. | |
} | |
void DHT::begin(void) { | |
// set up the pins! | |
pinMode(_pin, INPUT); | |
digitalWrite(_pin, HIGH); | |
_lastreadtime = 0; | |
DEBUG_PRINT("Max clock cycles: "); DEBUG_PRINTLN(_maxcycles, DEC); | |
} | |
//boolean S == Scale. True == Fahrenheit; False == Celcius | |
float DHT::readTemperature(bool S) { | |
float f = NAN; | |
if (read()) { | |
switch (_type) { | |
case DHT11: | |
f = data[2]; | |
if(S) { | |
f = convertCtoF(f); | |
} | |
break; | |
case DHT22: | |
case DHT21: | |
f = data[2] & 0x7F; | |
f *= 256; | |
f += data[3]; | |
f /= 10; | |
if (data[2] & 0x80) { | |
f *= -1; | |
} | |
if(S) { | |
f = convertCtoF(f); | |
} | |
break; | |
} | |
} | |
return f; | |
} | |
float DHT::convertCtoF(float c) { | |
return c * 9 / 5 + 32; | |
} | |
float DHT::convertFtoC(float f) { | |
return (f - 32) * 5 / 9; | |
} | |
float DHT::readHumidity(void) { | |
float f = NAN; | |
if (read()) { | |
switch (_type) { | |
case DHT11: | |
f = data[0]; | |
break; | |
case DHT22: | |
case DHT21: | |
f = data[0]; | |
f *= 256; | |
f += data[1]; | |
f /= 10; | |
break; | |
} | |
} | |
return f; | |
} | |
//boolean isFahrenheit: True == Fahrenheit; False == Celcius | |
float DHT::computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit) { | |
// Adapted from equation at: https://github.com/adafruit/DHT-sensor-library/issues/9 and | |
// Wikipedia: http://en.wikipedia.org/wiki/Heat_index | |
if (!isFahrenheit) { | |
// Celsius heat index calculation. | |
return -8.784695 + | |
1.61139411 * temperature + | |
2.338549 * percentHumidity + | |
-0.14611605 * temperature*percentHumidity + | |
-0.01230809 * pow(temperature, 2) + | |
-0.01642482 * pow(percentHumidity, 2) + | |
0.00221173 * pow(temperature, 2) * percentHumidity + | |
0.00072546 * temperature*pow(percentHumidity, 2) + | |
-0.00000358 * pow(temperature, 2) * pow(percentHumidity, 2); | |
} | |
else { | |
// Fahrenheit heat index calculation. | |
return -42.379 + | |
2.04901523 * temperature + | |
10.14333127 * percentHumidity + | |
-0.22475541 * temperature*percentHumidity + | |
-0.00683783 * pow(temperature, 2) + | |
-0.05481717 * pow(percentHumidity, 2) + | |
0.00122874 * pow(temperature, 2) * percentHumidity + | |
0.00085282 * temperature*pow(percentHumidity, 2) + | |
-0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2); | |
} | |
} | |
boolean DHT::read(void) { | |
// Check if sensor was read less than two seconds ago and return early | |
// to use last reading. | |
uint32_t currenttime = millis(); | |
if (currenttime < _lastreadtime) { | |
// ie there was a rollover | |
_lastreadtime = 0; | |
} | |
if (!_firstreading && ((currenttime - _lastreadtime) < 2000)) { | |
return _lastresult; // return last correct measurement | |
} | |
_firstreading = false; | |
_lastreadtime = millis(); | |
// Reset 40 bits of received data to zero. | |
data[0] = data[1] = data[2] = data[3] = data[4] = 0; | |
// Send start signal. See DHT datasheet for full signal diagram: | |
// http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf | |
// Go into high impedence state to let pull-up raise data line level and | |
// start the reading process. | |
digitalWrite(_pin, HIGH); | |
delay(250); | |
// First set data line low for 20 milliseconds. | |
pinMode(_pin, OUTPUT); | |
digitalWrite(_pin, LOW); | |
delay(20); | |
uint32_t cycles[80]; | |
{ | |
// Turn off interrupts temporarily because the next sections are timing critical | |
// and we don't want any interruptions. | |
InterruptLock lock; | |
// End the start signal by setting data line high for 40 microseconds. | |
digitalWrite(_pin, HIGH); | |
delayMicroseconds(40); | |
// Now start reading the data line to get the value from the DHT sensor. | |
pinMode(_pin, INPUT); | |
delayMicroseconds(10); // Delay a bit to let sensor pull data line low. | |
// First expect a low signal for ~80 microseconds followed by a high signal | |
// for ~80 microseconds again. | |
if (expectPulse(LOW) == 0) { | |
DEBUG_PRINTLN(F("Timeout waiting for start signal low pulse.")); | |
_lastresult = false; | |
return _lastresult; | |
} | |
if (expectPulse(HIGH) == 0) { | |
DEBUG_PRINTLN(F("Timeout waiting for start signal high pulse.")); | |
_lastresult = false; | |
return _lastresult; | |
} | |
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50 | |
// microsecond low pulse followed by a variable length high pulse. If the | |
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds | |
// then it's a 1. We measure the cycle count of the initial 50us low pulse | |
// and use that to compare to the cycle count of the high pulse to determine | |
// if the bit is a 0 (high state cycle count < low state cycle count), or a | |
// 1 (high state cycle count > low state cycle count). Note that for speed all | |
// the pulses are read into a array and then examined in a later step. | |
for (int i=0; i<80; i+=2) { | |
cycles[i] = expectPulse(LOW); | |
cycles[i+1] = expectPulse(HIGH); | |
} | |
} // Timing critical code is now complete. | |
// Inspect pulses and determine which ones are 0 (high state cycle count < low | |
// state cycle count), or 1 (high state cycle count > low state cycle count). | |
for (int i=0; i<40; ++i) { | |
uint32_t lowCycles = cycles[2*i]; | |
uint32_t highCycles = cycles[2*i+1]; | |
if ((lowCycles == 0) || (highCycles == 0)) { | |
DEBUG_PRINTLN(F("Timeout waiting for pulse.")); | |
_lastresult = false; | |
return _lastresult; | |
} | |
data[i/8] <<= 1; | |
// Now compare the low and high cycle times to see if the bit is a 0 or 1. | |
if (highCycles > lowCycles) { | |
// High cycles are greater than 50us low cycle count, must be a 1. | |
data[i/8] |= 1; | |
} | |
// Else high cycles are less than (or equal to, a weird case) the 50us low | |
// cycle count so this must be a zero. Nothing needs to be changed in the | |
// stored data. | |
} | |
DEBUG_PRINTLN(F("Received:")); | |
DEBUG_PRINT(data[0], HEX); DEBUG_PRINT(F(", ")); | |
DEBUG_PRINT(data[1], HEX); DEBUG_PRINT(F(", ")); | |
DEBUG_PRINT(data[2], HEX); DEBUG_PRINT(F(", ")); | |
DEBUG_PRINT(data[3], HEX); DEBUG_PRINT(F(", ")); | |
DEBUG_PRINT(data[4], HEX); DEBUG_PRINT(F(" =? ")); | |
DEBUG_PRINTLN((data[0] + data[1] + data[2] + data[3]) & 0xFF, HEX); | |
// Check we read 40 bits and that the checksum matches. | |
if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) { | |
_lastresult = true; | |
return _lastresult; | |
} | |
else { | |
DEBUG_PRINTLN(F("Checksum failure!")); | |
_lastresult = false; | |
return _lastresult; | |
} | |
} | |
// Expect the signal line to be at the specified level for a period of time and | |
// return a count of loop cycles spent at that level (this cycle count can be | |
// used to compare the relative time of two pulses). If more than a millisecond | |
// ellapses without the level changing then the call fails with a 0 response. | |
// This is adapted from Arduino's pulseInLong function (which is only available | |
// in the very latest IDE versions): | |
// https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/wiring_pulse.c | |
uint32_t DHT::expectPulse(bool level) { | |
uint32_t count = 0; | |
// On AVR platforms use direct GPIO port access as it's much faster and better | |
// for catching pulses that are 10's of microseconds in length: | |
#ifdef __AVR | |
uint8_t portState = level ? _bit : 0; | |
while ((*portInputRegister(_port) & _bit) == portState) { | |
if (count++ >= _maxcycles) { | |
return 0; // Exceeded timeout, fail. | |
} | |
} | |
// Otherwise fall back to using digitalRead (this seems to be necessary on ESP8266 | |
// right now, perhaps bugs in direct port access functions?). | |
#else | |
while (digitalRead(_pin) == level) { | |
if (count++ >= _maxcycles) { | |
return 0; // Exceeded timeout, fail. | |
} | |
} | |
#endif | |
return count; | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* DHT library | |
MIT license | |
written by Adafruit Industries | |
*/ | |
#ifndef DHT_H | |
#define DHT_H | |
#if ARDUINO >= 100 | |
#include "Arduino.h" | |
#else | |
#include "WProgram.h" | |
#endif | |
// Uncomment to enable printing out nice debug messages. | |
//#define DHT_DEBUG | |
// Define where debug output will be printed. | |
#define DEBUG_PRINTER Serial | |
// Setup debug printing macros. | |
#ifdef DHT_DEBUG | |
#define DEBUG_PRINT(...) { DEBUG_PRINTER.print(__VA_ARGS__); } | |
#define DEBUG_PRINTLN(...) { DEBUG_PRINTER.println(__VA_ARGS__); } | |
#else | |
#define DEBUG_PRINT(...) {} | |
#define DEBUG_PRINTLN(...) {} | |
#endif | |
// Define types of sensors. | |
#define DHT11 11 | |
#define DHT22 22 | |
#define DHT21 21 | |
#define AM2301 21 | |
class DHT { | |
public: | |
DHT(uint8_t pin, uint8_t type, uint8_t count=6); | |
void begin(void); | |
float readTemperature(bool S=false); | |
float convertCtoF(float); | |
float convertFtoC(float); | |
float computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit=true); | |
float readHumidity(void); | |
boolean read(void); | |
private: | |
uint8_t data[6]; | |
uint8_t _pin, _type, _bit, _port; | |
uint32_t _lastreadtime, _maxcycles; | |
bool _firstreading; | |
bool _lastresult; | |
uint32_t expectPulse(bool level); | |
}; | |
class InterruptLock { | |
public: | |
InterruptLock() { | |
noInterrupts(); | |
} | |
~InterruptLock() { | |
interrupts(); | |
} | |
}; | |
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <SoftwareSerial.h> | |
#include "./DHT.h" | |
#define DEBUG | |
#define _ledpin 13 | |
SoftwareSerial esp8266(10, 11); // RX, TX | |
//*-- DHT11 | |
#define _dhtpin 8 | |
#define _dhttype DHT11 | |
DHT dht11( _dhtpin, _dhttype ); | |
uint8_t dhtbuf[2]; | |
String SSID = ""; | |
String PASS = ""; | |
#define IP "184.106.153.149" // ThingSpeak IP Address: 184.106.153.149 | |
// 使用 GET 傳送資料的格式 | |
// GET /update?key=[THINGSPEAK_KEY]&field1=[data 1]&filed2=[data 2]...; | |
String GET = "GET /update?key=Q7WJSQJAS2KZMR2O"; | |
void setup() | |
{ | |
// Open serial communications and wait for port to open: | |
esp8266.begin(115200); | |
esp8266.setTimeout(5000); | |
Serial.begin(115200); //can't be faster than 19200 for softserial | |
Serial.println("ESP8266 Demo"); | |
//test if the module is ready | |
esp8266.println("AT+RST"); | |
delay(1000); | |
if (esp8266.find("ready")) { | |
Serial.println("Module is ready"); | |
} else { | |
Serial.println("Module have no response."); | |
while (1); | |
} | |
delay(1000); | |
//connect to the wifi | |
boolean connected = false; | |
for (int i = 0; i < 5; i++) { | |
if (connectWiFi()) { | |
connected = true; | |
break; | |
} | |
} | |
if (!connected) { | |
while (1); | |
} | |
delay(5000); | |
//print the ip addr | |
/*esp8266.println("AT+CIFSR"); | |
Serial.println("ip address:"); | |
while (esp8266.available()) | |
Serial.write(esp8266.read());*/ | |
//set the single connection mode | |
esp8266.println("AT+CIPMUX=0"); | |
// DHT11 | |
dht11.begin(); | |
pinMode( _ledpin, OUTPUT ); | |
digitalWrite( _ledpin, LOW ); | |
} | |
void sendDebug(String cmd) | |
{ | |
Serial.print("SEND: "); | |
Serial.println(cmd); | |
esp8266.println(cmd); | |
} | |
void loop() | |
{ | |
dhtbuf[0] = dht11.readHumidity(); | |
dhtbuf[1] = dht11.readTemperature(); | |
// 確認取回的溫溼度數據可用 | |
if (isnan(dhtbuf[0]) || isnan(dhtbuf[1])) { | |
Serial.println("Failed to read form DHT11"); | |
} else { | |
digitalWrite(_ledpin, HIGH); | |
char buf[3]; | |
String HH, TT; | |
buf[0] = 0x30 + dhtbuf[1] / 10; | |
buf[1] = 0x30 + dhtbuf[1] % 10; | |
TT = (String(buf)).substring(0, 2); | |
buf[0] = 0x30 + dhtbuf[0] / 10; | |
buf[1] = 0x30 + dhtbuf[0] % 10; | |
HH = (String(buf)).substring(0, 2); | |
updateDHT11(TT, HH); | |
#ifdef DEBUG | |
Serial.print("Humidity: "); | |
Serial.print(HH); | |
Serial.print(" %\t"); | |
Serial.print("Temperature: "); | |
Serial.print(TT); | |
Serial.println(" *C\t"); | |
#endif | |
digitalWrite(_ledpin, LOW); | |
} | |
delay(6000); // 60 second | |
} | |
void updateDHT11(String T, String H) | |
{ | |
// 設定 ESP8266 作為 Client 端 | |
String cmd = "AT+CIPSTART=\"TCP\",\""; | |
cmd += IP; | |
cmd += "\",80"; | |
sendDebug(cmd); | |
delay(2000); | |
if (esp8266.find("Error")) { | |
Serial.print("RECEIVED: Error\nExit1"); | |
return; | |
} | |
cmd = GET + "&field1=" + T + "&field2=" + H + "\r\n"; | |
esp8266.print("AT+CIPSEND="); | |
esp8266.println(cmd.length()); | |
if (esp8266.find(">")) { | |
Serial.print(">"); | |
Serial.print(cmd); | |
esp8266.print(cmd); | |
} else { | |
sendDebug("AT+CIPCLOSE"); | |
} | |
if (esp8266.find("OK")) { | |
Serial.println("RECEIVED: OK"); | |
} else { | |
Serial.println("RECEIVED: Error\nExit2"); | |
} | |
} | |
boolean connectWiFi() | |
{ | |
esp8266.println("AT+CWMODE=1"); | |
String cmd = "AT+CWJAP=\""; | |
cmd += SSID; | |
cmd += "\",\""; | |
cmd += PASS; | |
cmd += "\""; | |
Serial.println(cmd); | |
esp8266.println(cmd); | |
delay(2000); | |
if (esp8266.find("OK")) { | |
Serial.println("OK, Connected to WiFi."); | |
return true; | |
} else { | |
Serial.println("Can not connect to the WiFi."); | |
return false; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment