Created
March 14, 2020 19:35
-
-
Save shinyquagsire23/4315a2c83f254544741980bab7299f8b to your computer and use it in GitHub Desktop.
Extracting prominent color gradients from an image
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import imageio | |
import numpy as np | |
import cv2 | |
q = "20191230_221836_HDR.jpg" | |
r = "legs.png" | |
im = np.array(imageio.imread(r)) | |
im_orig = im | |
dims = im.shape | |
blurfactor = 5 | |
#scale = 0.125 | |
scale = 120/dims[0] | |
kernel = np.ones((blurfactor,blurfactor),np.float32)/(blurfactor**2) | |
im_ = im | |
im_ = cv2.filter2D(im_,-1,kernel) | |
im_ = cv2.resize(im_, dsize=(int(dims[1]*scale), int(dims[0]*scale)), interpolation=cv2.INTER_CUBIC) | |
imageio.imwrite("pre.png", im_) | |
im_rgb = im_ | |
im_hsv = cv2.cvtColor(im_, cv2.COLOR_RGB2HSV) | |
im = im_rgb | |
dims = im.shape | |
im_vecs = np.zeros((dims[0], dims[1], 1+2), dtype=np.uint8) | |
print (dims) | |
# Calculate direction of least change for each pixel | |
for x in range(0, dims[0]-1): | |
print (x) | |
for y in range(0, dims[1]-1): | |
val = im[x,y] | |
if (x == 0 and y == 0): | |
val_upleft = 2 * val | |
else: | |
val_upleft = im[x-1,y-1] | |
if (x == 0): | |
val_left = 2 * val | |
val_downleft = 2 * val | |
else: | |
val_left = im[x-1,y] | |
val_downleft = im[x-1,y+1] | |
if (y == 0): | |
val_up = 2 * val | |
val_upright = 2 * val | |
else: | |
val_up = im[x,y-1] | |
val_upright = im[x+1,y-1] | |
val_down = im[x,y+1] | |
val_downright = im[x+1,y+1] | |
val_right = im[x+1,y] | |
alldirs_direction = [(-1,0), (-1,-1), (0,-1), (1,-1), (1,0), (1,1), (0,1), (-1,1)] | |
alldirs = [val_left, val_upleft, val_up, val_upright, val_right, val_downright, val_down, val_downleft] | |
mindir = -1 | |
minval = 256 | |
for i in range(0, 8): | |
diff = abs(alldirs[i] - val) | |
#if ( <= minval): | |
# mindir = i | |
# minval = np.linalg.norm(diff) | |
diff = 0.2126*diff[0] + 0.7152*diff[1] + 0.0722*diff[2] | |
#diff = (diff[0] + diff[1] + diff[2]) / 3 | |
#diff = np.linalg.norm(diff) | |
if (diff <= minval): | |
mindir = i | |
minval = diff | |
diff = np.array([minval])#np.array((alldirs[mindir] - val)) | |
direction = np.array(alldirs_direction[mindir]) | |
entry = np.concatenate((diff, direction)) | |
im_vecs[x,y] = entry | |
# Use direction of least change to find color gradients | |
visited = np.zeros((dims[0], dims[1]), dtype=np.uint8) | |
color_visited = np.zeros((256,256,256), dtype=np.uint8) | |
gradients = np.zeros((dims[0], dims[1], dims[2]), dtype=np.uint8) | |
gradients_list = [] | |
longest_chain = 0 | |
im = im_rgb | |
for x in range(0, dims[0]-1): | |
for y in range(0, dims[1]-1): | |
xpos = x | |
ypos = y | |
gradient = [] | |
lastval = np.array([0,0,0]) | |
lastval_hsv = np.array([0,0,0]) | |
has_lastval = False | |
for i in range(0, 4000): | |
if (ypos >= dims[1] or xpos >= dims[0] or xpos < 0 or ypos < 0): | |
break | |
if (visited[xpos,ypos] == 255): | |
break | |
#visited[xpos,ypos] = 255 | |
val = im[xpos,ypos,:] | |
val_hsv = im[xpos,ypos,:] | |
vec = im_vecs[xpos,ypos,:] | |
if (len(gradient) > 4): | |
prev_var = np.linalg.norm(np.var(gradient, axis=0)) | |
next_var = np.linalg.norm(np.var(gradient + [val], axis=0)) | |
if (abs(prev_var - next_var) > 300): | |
break | |
if (has_lastval and abs(np.linalg.norm(val_hsv - lastval_hsv)) > 70): | |
break | |
if (color_visited[val[0], val[1], val[2]] != 1): | |
#if (True): | |
gradient += [val] | |
color_visited[val[0], val[1], val[2]] = 1 | |
gradients[xpos,ypos] = val | |
visited[xpos,ypos] = 255 | |
has_lastval = True | |
lastval = val | |
lastval_hsv = val_hsv | |
#else: | |
#gradients[xpos,ypos] = lastval | |
xpos += vec[1] | |
ypos += vec[2] | |
#print (val, xpos, ypos, vec) | |
accepted = True | |
if (len(gradient) <= 4): | |
accepted = False | |
elif (np.linalg.norm(np.var(gradient, axis=0)) < 400): | |
accepted = False | |
if (accepted): | |
gradients_list += [gradient] | |
if (len(gradient) > longest_chain): | |
longest_chain = len(gradient) | |
else: | |
for val in gradient: | |
color_visited[val[0], val[1], val[2]] = 0 | |
# Generate gradient image | |
g_x = 0 | |
g_y = 0 | |
gradients_list.sort(key=len, reverse=True) | |
gradients_list_img = np.zeros((len(gradients_list)+1, longest_chain+1, dims[2]), dtype=np.uint8) | |
tossed = np.zeros((len(gradients_list),)) | |
palette_set = [] | |
for i in range(0, len(gradients_list)): | |
gradient = gradients_list[i] | |
discard = False | |
for j in range(0, i): | |
if (tossed[i] == 1): | |
continue | |
orig_var = np.linalg.norm(np.var(gradient, axis=0)) | |
comb_var = np.linalg.norm(np.var(gradient+gradients_list[j], axis=0)) | |
#print (i,j,orig_var,comb_var,abs(comb_var-orig_var)) | |
if (abs(comb_var-orig_var) < 100): | |
tossed[i] = 1 | |
discard = True | |
break | |
if (discard): | |
continue | |
print (np.var(gradient, axis=0), np.linalg.norm(np.var(gradient, axis=0))) | |
g_x = 0 | |
for val in gradient: | |
palette_set += [val] | |
gradients_list_img[g_y, g_x] = val | |
g_x += 1 | |
g_y += 1 | |
gradients_list_img = cv2.resize(gradients_list_img, dsize=(gradients_list_img.shape[1] * 32, gradients_list_img.shape[0] * 32), interpolation=cv2.INTER_NEAREST) | |
imageio.imwrite("testi.png", im_vecs[:,:,:]) | |
imageio.imwrite("testj.png", visited) | |
imageio.imwrite("testk.png", gradients) | |
imageio.imwrite("testl.png", gradients_list_img) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment