Instantly share code, notes, and snippets.
Created
July 20, 2021 11:38
-
Star
0
(0)
You must be signed in to star a gist -
Fork
0
(0)
You must be signed in to fork a gist
-
Save shoaibmehedi7/bc7a27af57b06a54b857766dc1647607 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#socialDistancing.py | |
import cv2 | |
import datetime | |
import imutils | |
import numpy as np | |
from centroidtracker import CentroidTracker | |
from itertools import combinations | |
import math | |
protopath = "MobileNetSSD_deploy.prototxt" | |
modelpath = "MobileNetSSD_deploy.caffemodel" | |
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath) | |
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", | |
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable", | |
"dog", "horse", "motorbike", "person", "pottedplant", "sheep", | |
"sofa", "train", "tvmonitor"] | |
tracker = CentroidTracker(maxDisappeared=40, maxDistance=50) | |
def non_max_suppression_fast(boxes, overlapThresh): | |
try: | |
if len(boxes) == 0: | |
return [] | |
if boxes.dtype.kind == "i": | |
boxes = boxes.astype("float") | |
pick = [] | |
x1 = boxes[:, 0] | |
y1 = boxes[:, 1] | |
x2 = boxes[:, 2] | |
y2 = boxes[:, 3] | |
area = (x2 - x1 + 1) * (y2 - y1 + 1) | |
idxs = np.argsort(y2) | |
while len(idxs) > 0: | |
last = len(idxs) - 1 | |
i = idxs[last] | |
pick.append(i) | |
xx1 = np.maximum(x1[i], x1[idxs[:last]]) | |
yy1 = np.maximum(y1[i], y1[idxs[:last]]) | |
xx2 = np.minimum(x2[i], x2[idxs[:last]]) | |
yy2 = np.minimum(y2[i], y2[idxs[:last]]) | |
w = np.maximum(0, xx2 - xx1 + 1) | |
h = np.maximum(0, yy2 - yy1 + 1) | |
overlap = (w * h) / area[idxs[:last]] | |
idxs = np.delete(idxs, np.concatenate(([last], | |
np.where(overlap > overlapThresh)[0]))) | |
return boxes[pick].astype("int") | |
except Exception as e: | |
print("Exception occurred in non_max_suppression : {}".format(e)) | |
def main(): | |
cap = cv2.VideoCapture('/home/python/OpenCV/soacialDistanceDetect/video .mp4') | |
fps_start_time = datetime.datetime.now() | |
fps = 0 | |
total_frames = 0 | |
while True: | |
ret, frame = cap.read() | |
frame = imutils.resize(frame, width=600) | |
total_frames = total_frames + 1 | |
(H, W) = frame.shape[:2] | |
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5) | |
detector.setInput(blob) | |
person_detections = detector.forward() | |
rects = [] | |
for i in np.arange(0, person_detections.shape[2]): | |
confidence = person_detections[0, 0, i, 2] | |
if confidence > 0.5: | |
idx = int(person_detections[0, 0, i, 1]) | |
if CLASSES[idx] != "person": | |
continue | |
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H]) | |
(startX, startY, endX, endY) = person_box.astype("int") | |
rects.append(person_box) | |
boundingboxes = np.array(rects) | |
boundingboxes = boundingboxes.astype(int) | |
rects = non_max_suppression_fast(boundingboxes, 0.3) | |
centroid_dict = dict() | |
objects = tracker.update(rects) | |
for (objectId, bbox) in objects.items(): | |
x1, y1, x2, y2 = bbox | |
x1 = int(x1) | |
y1 = int(y1) | |
x2 = int(x2) | |
y2 = int(y2) | |
cX = int((x1 + x2) / 2.0) | |
cY = int((y1 + y2) / 2.0) | |
centroid_dict[objectId] = (cX, cY, x1, y1, x2, y2) | |
red_zone_list = [] | |
for (id1, p1), (id2, p2) in combinations(centroid_dict.items(), 2): | |
dx, dy = p1[0] - p2[0], p1[1] - p2[1] | |
distance = math.sqrt(dx * dx + dy * dy) | |
if distance < 75.0: | |
if id1 not in red_zone_list: | |
red_zone_list.append(id1) | |
if id2 not in red_zone_list: | |
red_zone_list.append(id2) | |
for id, box in centroid_dict.items(): | |
if id in red_zone_list: | |
cv2.rectangle(frame, (box[2], box[3]), (box[4], box[5]), (0, 0, 255), 2) | |
else: | |
cv2.rectangle(frame, (box[2], box[3]), (box[4], box[5]), (0, 255, 0), 2) | |
fps_end_time = datetime.datetime.now() | |
time_diff = fps_end_time - fps_start_time | |
if time_diff.seconds == 0: | |
fps = 0.0 | |
else: | |
fps = (total_frames / time_diff.seconds) | |
fps_text = "FPS: {:.2f}".format(fps) | |
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1) | |
cv2.imshow("SocialDistancing", frame) | |
key = cv2.waitKey(1) | |
if key == ord('q'): | |
break | |
cv2.destroyAllWindows() | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment