-
-
Save shobhit6993/7088061 to your computer and use it in GitHub Desktop.
C++ implementation of segment tree with lazy propagation.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* In this code we have a very large array called arr, and very large set of operations | |
* Operation #1: Increment the elements within range [i, j] with value val | |
* Operation #2: Get max element within range [i, j] | |
* Build tree: build_tree(1, 0, N-1) | |
* Update tree: update_tree(1, 0, N-1, i, j, value) | |
* Query tree: query_tree(1, 0, N-1, i, j) | |
* Actual space required by the tree = 2*2^ceil(log_2(n)) - 1 | |
*/ | |
#include<iostream> | |
#include<algorithm> | |
using namespace std; | |
#include<string.h> | |
#include<math.h> | |
#define N 20 | |
#define MAX (1+(1<<6)) // Why? :D | |
#define inf 0x7fffffff | |
int arr[N]; | |
int tree[MAX]; | |
int lazy[MAX]; | |
/** | |
* Build and init tree | |
*/ | |
void build_tree(int node, int a, int b) { | |
if(a > b) return; // Out of range | |
if(a == b) { // Leaf node | |
tree[node] = arr[a]; // Init value | |
return; | |
} | |
build_tree(node*2, a, (a+b)/2); // Init left child | |
build_tree(node*2+1, 1+(a+b)/2, b); // Init right child | |
tree[node] = max(tree[node*2], tree[node*2+1]); // Init root value | |
} | |
/** | |
* Increment elements within range [i, j] with value value | |
*/ | |
void update_tree(int node, int a, int b, int i, int j, int value) { | |
if(lazy[node] != 0) { // This node needs to be updated | |
tree[node] += lazy[node]; // Update it | |
if(a != b) { | |
lazy[node*2] += lazy[node]; // Mark child as lazy | |
lazy[node*2+1] += lazy[node]; // Mark child as lazy | |
} | |
lazy[node] = 0; // Reset it | |
} | |
if(a > b || a > j || b < i) // Current segment is not within range [i, j] | |
return; | |
if(a >= i && b <= j) { // Segment is fully within range | |
tree[node] += value; | |
if(a != b) { // Not leaf node | |
lazy[node*2] += value; | |
lazy[node*2+1] += value; | |
} | |
return; | |
} | |
update_tree(node*2, a, (a+b)/2, i, j, value); // Updating left child | |
update_tree(1+node*2, 1+(a+b)/2, b, i, j, value); // Updating right child | |
tree[node] = max(tree[node*2], tree[node*2+1]); // Updating root with max value | |
} | |
/** | |
* Query tree to get max element value within range [i, j] | |
*/ | |
int query_tree(int node, int a, int b, int i, int j) { | |
if(a > b || a > j || b < i) return -inf; // Out of range | |
if(lazy[node] != 0) { // This node needs to be updated | |
tree[node] += lazy[node]; // Update it | |
if(a != b) { | |
lazy[node*2] += lazy[node]; // Mark child as lazy | |
lazy[node*2+1] += lazy[node]; // Mark child as lazy | |
} | |
lazy[node] = 0; // Reset it | |
} | |
if(a >= i && b <= j) // Current segment is totally within range [i, j] | |
return tree[node]; | |
int q1 = query_tree(node*2, a, (a+b)/2, i, j); // Query left child | |
int q2 = query_tree(1+node*2, 1+(a+b)/2, b, i, j); // Query right child | |
int res = max(q1, q2); // Return final result | |
return res; | |
} | |
int main() { | |
for(int i = 0; i < N; i++) arr[i] = 1; | |
build_tree(1, 0, N-1); | |
memset(lazy, 0, sizeof lazy); | |
update_tree(1, 0, N-1, 0, 6, 5); // Increment range [0, 6] by 5. here 0, N-1 represent the current range. | |
update_tree(1, 0, N-1, 7, 10, 12); // Incremenet range [7, 10] by 12. here 0, N-1 represent the current range. | |
update_tree(1, 0, N-1, 10, N-1, 100); // Increment range [10, N-1] by 100. here 0, N-1 represent the current range. | |
cout << query_tree(1, 0, N-1, 0, N-1) << endl; // Get max element in range [0, N-1] | |
} |
This is max query problem so need for multiplying b-a+1
Works fine. Tested on various problems. Thanks for sharing.
update part seems to be wrong
the update expression should be
tree[node] += lazy[node]*(b-a+1);
This is a segment_tree max.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
update part seems to be wrong
the update expression should be
tree[node] += lazy[node]*(b-a+1);