Created
April 15, 2015 18:41
-
-
Save shoyer/bfdda77549dcead3e996 to your computer and use it in GitHub Desktop.
xray groupby transform profiling
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
4926489 function calls (4835695 primitive calls) in 11.314 seconds | |
Ordered by: internal time | |
ncalls tottime percall cumtime percall filename:lineno(function) | |
21928 1.839 0.000 4.441 0.000 slicing.py:202(slice_slices_and_integers) | |
4 1.521 0.380 1.610 0.402 {sum} | |
109869 1.494 0.000 1.494 0.000 {method 'update' of 'dict' objects} | |
131496 1.173 0.000 1.333 0.000 slicing.py:241(_slice_1d) | |
65748 0.624 0.000 1.551 0.000 slicing.py:544(new_blockdim) | |
43964 0.396 0.000 0.399 0.000 core.py:638(<genexpr>) | |
1297278 0.344 0.000 0.348 0.000 {isinstance} | |
43880 0.312 0.000 0.312 0.000 slicing.py:99(<genexpr>) | |
2 0.301 0.151 11.187 5.594 ops.py:135(interleaved_concat) | |
66156 0.285 0.000 0.433 0.000 slicing.py:528(insert_many) | |
21940 0.258 0.000 5.967 0.000 slicing.py:113(slice_with_newaxes) | |
153569/153426 0.218 0.000 1.148 0.000 {map} | |
21940 0.218 0.000 6.686 0.000 slicing.py:34(slice_array) | |
21964 0.193 0.000 8.625 0.000 core.py:620(__getitem__) | |
21940 0.190 0.000 5.025 0.000 slicing.py:144(slice_wrap_lists) | |
65830 0.132 0.000 0.211 0.000 {sorted} | |
21989 0.119 0.000 0.160 0.000 core.py:530(__init__) | |
109640/21940 0.108 0.000 0.206 0.000 slicing.py:501(posify_index) | |
1 0.097 0.097 10.884 10.884 ops.py:113(_interleaved_concat_slow) | |
67614 0.096 0.000 0.096 0.000 {zip} | |
43929 0.092 0.000 1.593 0.000 dicttoolz.py:10(merge) | |
1 0.084 0.084 2.209 2.209 core.py:939(concatenate) | |
109750 0.081 0.000 0.963 0.000 {all} | |
44048 0.077 0.000 0.371 0.000 slicing.py:130(<genexpr>) | |
198360 0.075 0.000 0.075 0.000 {method 'pop' of 'list' objects} | |
22012 0.068 0.000 0.068 0.000 core.py:27(<genexpr>) | |
241855 0.067 0.000 0.067 0.000 {method 'items' of 'dict' objects} | |
132247 0.066 0.000 0.066 0.000 {range} | |
22357 0.064 0.000 0.076 0.000 core.py:547(shape) | |
87760 0.060 0.000 0.069 0.000 slicing.py:119(<genexpr>) | |
66540 0.055 0.000 0.080 0.000 itertoolz.py:304(first) | |
421900/421887 0.051 0.000 0.051 0.000 {len} | |
131498 0.049 0.000 0.049 0.000 {min} | |
87724 0.047 0.000 0.054 0.000 slicing.py:157(<genexpr>) | |
45224 0.041 0.000 0.045 0.000 functoolz.py:214(__call__) | |
87676 0.040 0.000 0.047 0.000 slicing.py:213(<genexpr>) | |
21940 0.038 0.000 0.038 0.000 slicing.py:562(replace_ellipsis) | |
87724 0.033 0.000 0.047 0.000 slicing.py:168(<genexpr>) | |
21964 0.033 0.000 0.053 0.000 slicing.py:11(sanitize_index_elements) | |
246246 0.027 0.000 0.027 0.000 {method 'append' of 'list' objects} | |
43856 0.023 0.000 0.023 0.000 slicing.py:230(<genexpr>) | |
43832 0.023 0.000 0.023 0.000 {_bisect.bisect} | |
88556/88482 0.020 0.000 0.100 0.000 {next} | |
21917 0.019 0.000 0.088 0.000 core.py:984(<genexpr>) | |
21940 0.016 0.000 0.016 0.000 slicing.py:136(<genexpr>) | |
12 0.016 0.001 0.020 0.002 slicing.py:359(partition_by_size) | |
66829/66730 0.015 0.000 0.015 0.000 {iter} | |
65748 0.013 0.000 0.013 0.000 {method 'keys' of 'dict' objects} | |
65892 0.012 0.000 0.012 0.000 {method 'values' of 'dict' objects} | |
1 0.010 0.010 0.012 0.012 groupby.py:15(unique_value_groups) | |
21917 0.006 0.000 0.008 0.000 itertoolz.py:29(accumulate) | |
3 0.006 0.002 0.014 0.005 core.py:979(<genexpr>) | |
21917 0.004 0.000 0.004 0.000 core.py:1004(<genexpr>) | |
48 0.003 0.000 0.019 0.000 core.py:197(top) | |
144 0.002 0.000 0.008 0.000 core.py:147(broadcast_dimensions) | |
257/255 0.002 0.000 0.003 0.000 {numpy.core.multiarray.array} | |
732 0.002 0.000 0.003 0.000 core.py:143(<lambda>) | |
21915 0.002 0.000 0.002 0.000 {operator.add} | |
2760/564 0.002 0.000 0.002 0.000 core.py:83(lol_tuples) | |
1043 0.002 0.000 0.004 0.000 abc.py:128(__instancecheck__) | |
25 0.002 0.000 2.231 0.089 ops.py:54(f) | |
12 0.002 0.000 0.002 0.000 slicing.py:381(issorted) | |
48 0.002 0.000 0.029 0.001 core.py:813(atop) | |
288 0.002 0.000 0.002 0.000 itertoolz.py:56(groupby) | |
96 0.001 0.000 0.005 0.000 dataset.py:548(_copy_listed) | |
1104/564 0.001 0.000 0.008 0.000 utils.py:16(deepmap) | |
2000 0.001 0.000 0.001 0.000 _weakrefset.py:70(__contains__) | |
1 0.001 0.001 0.001 0.001 nputils.py:43(interleaved_concat) | |
1 0.001 0.001 0.001 0.001 {pandas.tslib.get_date_field} | |
96 0.001 0.000 0.003 0.000 index.py:127(__new__) | |
294 0.001 0.000 0.003 0.000 _abcoll.py:545(update) | |
2928 0.001 0.000 0.001 0.000 core.py:143(<genexpr>) | |
12 0.001 0.000 0.021 0.002 slicing.py:402(take_sorted) | |
84 0.001 0.000 0.006 0.000 dataset.py:606(__getitem__) | |
848 0.001 0.000 0.001 0.000 {hasattr} | |
144 0.001 0.000 0.001 0.000 dicttoolz.py:61(valmap) | |
1552/1539 0.001 0.000 0.003 0.000 {getattr} | |
324 0.000 0.000 0.002 0.000 itertoolz.py:740(join) | |
576 0.000 0.000 0.000 0.000 core.py:187(<genexpr>) | |
12 0.000 0.000 0.019 0.002 dataset.py:1483(reduce) | |
610 0.000 0.000 0.000 0.000 {method 'view' of 'numpy.ndarray' objects} | |
22 0.000 0.000 0.001 0.000 index.py:2773(equals) | |
12 0.000 0.000 0.059 0.005 dataset.py:928(isel) | |
404 0.000 0.000 0.001 0.000 base.py:307(shape) | |
1 0.000 0.000 11.321 11.321 <string>:1(<module>) | |
451 0.000 0.000 0.007 0.000 variable.py:205(shape) | |
39 0.000 0.000 0.000 0.000 {method 'reduce' of 'numpy.ufunc' objects} | |
1 0.000 0.000 11.294 11.294 dataset.py:1609(_concat) | |
528 0.000 0.000 0.001 0.000 index.py:277(values) | |
457 0.000 0.000 0.004 0.000 utils.py:337(ndim) | |
564 0.000 0.000 0.008 0.000 core.py:124(zero_broadcast_dimensions) | |
94 0.000 0.000 0.004 0.000 variable.py:851(to_index) | |
576 0.000 0.000 0.000 0.000 core.py:189(<genexpr>) | |
84 0.000 0.000 0.005 0.000 dataarray.py:194(_new_from_dataset) | |
182 0.000 0.000 0.000 0.000 dataset.py:435(dims) | |
102 0.000 0.000 0.004 0.000 variable.py:172(__init__) | |
12 0.000 0.000 0.011 0.001 core.py:1118(elemwise) | |
75 0.000 0.000 0.001 0.000 index.py:2690(__new__) | |
29 0.000 0.000 0.004 0.000 dataset.py:145(_calculate_dims) | |
48 0.000 0.000 0.056 0.001 variable.py:473(isel) | |
372 0.000 0.000 0.001 0.000 utils.py:364(shape) | |
48 0.000 0.000 0.000 0.000 inspect.py:744(getargs) | |
72 0.000 0.000 0.000 0.000 functoolz.py:155(__init__) | |
101 0.000 0.000 0.001 0.000 index.py:218(_simple_new) | |
12 0.000 0.000 0.016 0.001 reductions.py:14(reduction) | |
47 0.000 0.000 0.006 0.000 coordinates.py:211(__getitem__) | |
12 0.000 0.000 0.000 0.000 {method 'tolist' of 'numpy.ndarray' objects} | |
36 0.000 0.000 0.003 0.000 variable.py:820(__getitem__) | |
1 0.000 0.000 11.295 11.295 alignment.py:221(concat) | |
794 0.000 0.000 0.000 0.000 variable.py:278(dims) | |
240 0.000 0.000 0.000 0.000 itertoolz.py:727(getter) | |
164 0.000 0.000 0.006 0.000 _abcoll.py:403(iteritems) | |
36 0.000 0.000 0.001 0.000 indexing.py:357(__getitem__) | |
96 0.000 0.000 0.000 0.000 itertoolz.py:628(partition) | |
102 0.000 0.000 0.002 0.000 variable.py:284(_parse_dimensions) | |
22 0.000 0.000 0.006 0.000 alignment.py:27(_get_all_indexes) | |
252 0.000 0.000 0.000 0.000 itertoolz.py:413(concat) | |
19 0.000 0.000 0.001 0.000 index.py:196(__new__) | |
12 0.000 0.000 0.016 0.001 reductions.py:178(nanmean) | |
421 0.000 0.000 0.000 0.000 {built-in method __new__ of type object at 0x100183980} | |
12 0.000 0.000 0.051 0.004 indexing.py:327(__getitem__) | |
12 0.000 0.000 0.017 0.001 ops.py:273(f) | |
31 0.000 0.000 0.000 0.000 index.py:497(_simple_new) | |
48 0.000 0.000 0.001 0.000 inspect.py:804(getargspec) | |
84 0.000 0.000 0.000 0.000 functoolz.py:326(memof) | |
51 0.000 0.000 0.001 0.000 variable.py:357(attrs) | |
15 0.000 0.000 0.001 0.000 common.py:128(__getattr__) | |
12 0.000 0.000 0.000 0.000 index.py:1354(__getitem__) | |
12 0.000 0.000 0.052 0.004 variable.py:304(__getitem__) | |
12 0.000 0.000 0.007 0.001 variable.py:558(expand_dims) | |
102 0.000 0.000 0.001 0.000 variable.py:70(_as_compatible_data) | |
48 0.000 0.000 0.001 0.000 functoolz.py:100(_num_required_args) | |
1 0.000 0.000 0.000 0.000 base.py:129(hasnans) | |
107 0.000 0.000 0.000 0.000 dataset.py:478(_construct_direct) | |
12 0.000 0.000 0.046 0.004 <string>:1(<lambda>) | |
137/135 0.000 0.000 0.002 0.000 numeric.py:394(asarray) | |
60 0.000 0.000 0.000 0.000 core.py:543(numblocks) | |
13 0.000 0.000 0.105 0.008 groupby.py:448(<genexpr>) | |
466 0.000 0.000 0.000 0.000 {issubclass} | |
36 0.000 0.000 0.007 0.000 variable.py:908(<genexpr>) | |
48 0.000 0.000 0.000 0.000 functoolz.py:407(pipe) | |
24/12 0.000 0.000 0.020 0.002 {operator.__sub__} | |
1 0.000 0.000 0.000 0.000 {method 'get_labels' of 'pandas.hashtable.Int64HashTable' objects} | |
13 0.000 0.000 0.000 0.000 variable.py:888(_unified_dims) | |
145 0.000 0.000 0.001 0.000 core.py:578(ndim) | |
17 0.000 0.000 0.005 0.000 alignment.py:47(align) | |
12 0.000 0.000 0.021 0.002 dataset.py:1832(_calculate_binary_op) | |
612 0.000 0.000 0.000 0.000 itertoolz.py:81(<lambda>) | |
2 0.000 0.000 11.189 5.595 variable.py:647(concat) | |
144 0.000 0.000 0.000 0.000 coordinates.py:55(__iter__) | |
181 0.000 0.000 0.000 0.000 pycompat.py:23(iteritems) | |
161 0.000 0.000 0.000 0.000 utils.py:136(is_dict_like) | |
44 0.000 0.000 0.000 0.000 index.py:2834(_isnan) | |
12 0.000 0.000 0.020 0.002 dataset.py:1834(apply_over_both) | |
40 0.000 0.000 0.000 0.000 {numpy.core.multiarray.empty} | |
96 0.000 0.000 0.000 0.000 itertoolz.py:694(pluck) | |
12 0.000 0.000 0.017 0.001 variable.py:600(reduce) | |
12 0.000 0.000 0.027 0.002 dataset.py:1800(func) | |
12 0.000 0.000 0.000 0.000 _methods.py:53(_mean) | |
128 0.000 0.000 0.000 0.000 dataset.py:413(variables) | |
24 0.000 0.000 0.000 0.000 indexing.py:10(expanded_indexer) | |
39 0.000 0.000 0.001 0.000 variable.py:809(__init__) | |
84 0.000 0.000 0.000 0.000 dataarray.py:263(variable) | |
189 0.000 0.000 0.000 0.000 utils.py:250(__contains__) | |
23 0.000 0.000 0.003 0.000 variable.py:844(_data_equals) | |
12 0.000 0.000 0.004 0.000 core.py:1021(transpose) | |
132 0.000 0.000 0.000 0.000 index.py:251(_reset_identity) | |
22 0.000 0.000 0.007 0.000 alignment.py:36(_join_indexes) | |
177 0.000 0.000 0.000 0.000 utils.py:241(__getitem__) | |
108 0.000 0.000 0.000 0.000 core.py:823(<genexpr>) | |
12 0.000 0.000 0.000 0.000 {method 'astype' of 'numpy.ndarray' objects} | |
24 0.000 0.000 0.000 0.000 index.py:924(__getitem__) | |
107 0.000 0.000 0.000 0.000 dataset.py:729(coords) | |
101 0.000 0.000 0.000 0.000 __init__.py:121(iteritems) | |
1 0.000 0.000 0.000 0.000 algorithms.py:98(factorize) | |
83 0.000 0.000 0.000 0.000 {method 'values' of 'cyordereddict._cyordereddict.OrderedDict' objects} | |
310 0.000 0.000 0.000 0.000 utils.py:238(__init__) | |
190 0.000 0.000 0.000 0.000 dataset.py:573(<genexpr>) | |
47 0.000 0.000 0.000 0.000 coordinates.py:208(__contains__) | |
47 0.000 0.000 0.003 0.000 dataarray.py:304(to_index) | |
24 0.000 0.000 0.000 0.000 ops.py:262(_ignore_warnings_if) | |
41 0.000 0.000 0.000 0.000 dataset.py:153(<genexpr>) | |
24 0.000 0.000 0.001 0.000 dataset.py:494(_replace_vars_and_dims) | |
24 0.000 0.000 0.000 0.000 index.py:344(_get_attributes_dict) | |
5 0.000 0.000 0.007 0.001 dataset.py:1214(merge) | |
12 0.000 0.000 0.005 0.000 variable.py:500(transpose) | |
106 0.000 0.000 0.000 0.000 variable.py:815(_data_cached) | |
76 0.000 0.000 0.000 0.000 index.py:262(__array__) | |
12 0.000 0.000 0.000 0.000 {operator.sub} | |
252 0.000 0.000 0.000 0.000 {built-in method from_iterable} | |
48 0.000 0.000 0.000 0.000 indexing.py:282(orthogonally_indexable) | |
182 0.000 0.000 0.000 0.000 utils.py:268(__init__) | |
648 0.000 0.000 0.000 0.000 {callable} | |
290 0.000 0.000 0.000 0.000 {method 'add' of 'set' objects} | |
84 0.000 0.000 0.000 0.000 core.py:292(<genexpr>) | |
72 0.000 0.000 0.000 0.000 dataset.py:969(<genexpr>) | |
26 0.000 0.000 0.000 0.000 dataset.py:1703(ensure_common_dims) | |
241 0.000 0.000 0.000 0.000 coordinates.py:39(_names) | |
96 0.000 0.000 0.000 0.000 variable.py:213(data) | |
36 0.000 0.000 0.000 0.000 numeric.py:1910(isscalar) | |
24 0.000 0.000 0.000 0.000 index.py:360(_shallow_copy) | |
84 0.000 0.000 0.000 0.000 core.py:562(<lambda>) | |
70 0.000 0.000 0.000 0.000 utils.py:280(__iter__) | |
77 0.000 0.000 0.000 0.000 index.py:329(_coerce_to_ndarray) | |
31 0.000 0.000 0.000 0.000 coordinates.py:202(__iter__) | |
2 0.000 0.000 0.000 0.000 numeric.py:2328(array_equal) | |
5 0.000 0.000 0.003 0.001 dataset.py:188(_merge_dict) | |
15 0.000 0.000 0.000 0.000 _abcoll.py:412(items) | |
77 0.000 0.000 0.000 0.000 variable.py:57(_maybe_wrap_data) | |
13 0.000 0.000 0.059 0.005 groupby.py:172(_iter_grouped) | |
12 0.000 0.000 0.020 0.002 variable.py:769(func) | |
12 0.000 0.000 0.008 0.001 variable.py:906(_broadcast_compat_variables) | |
12 0.000 0.000 0.008 0.001 variable.py:928(_broadcast_compat_data) | |
22 0.000 0.000 0.000 0.000 {method 'copy' of 'cyordereddict._cyordereddict.OrderedDict' objects} | |
36 0.000 0.000 0.000 0.000 core.py:1157(<genexpr>) | |
12 0.000 0.000 0.023 0.002 slicing.py:448(take) | |
12 0.000 0.000 0.000 0.000 contextlib.py:21(__exit__) | |
84 0.000 0.000 0.000 0.000 coordinates.py:64(__contains__) | |
23 0.000 0.000 0.003 0.000 variable.py:718(equals) | |
5 0.000 0.000 0.004 0.001 dataset.py:335(_update_vars_and_coords) | |
14 0.000 0.000 0.002 0.000 dataset.py:32(_get_virtual_variable) | |
107 0.000 0.000 0.000 0.000 coordinates.py:166(__init__) | |
33 0.000 0.000 0.000 0.000 dataset.py:225(<genexpr>) | |
1 0.000 0.000 0.012 0.012 groupby.py:86(__init__) | |
22 0.000 0.000 0.000 0.000 alignment.py:42(<genexpr>) | |
121 0.000 0.000 0.000 0.000 {method 'update' of 'set' objects} | |
28 0.000 0.000 0.000 0.000 variable.py:349(attrs) | |
38 0.000 0.000 0.000 0.000 indexing.py:342(__init__) | |
48 0.000 0.000 0.000 0.000 variable.py:298(_item_key_to_tuple) | |
14 0.000 0.000 0.000 0.000 common.py:94(get_axis_num) | |
33 0.000 0.000 0.000 0.000 abc.py:148(__subclasscheck__) | |
84 0.000 0.000 0.000 0.000 {method 'item' of 'numpy.ndarray' objects} | |
48 0.000 0.000 0.000 0.000 variable.py:369(encoding) | |
12 0.000 0.000 0.019 0.002 common.py:38(wrapped_func) | |
84 0.000 0.000 0.000 0.000 utils.py:244(__iter__) | |
42 0.000 0.000 0.000 0.000 alignment.py:86(<genexpr>) | |
5 0.000 0.000 0.000 0.000 dataset.py:79(_align_variables) | |
12 0.000 0.000 0.011 0.001 core.py:719(__sub__) | |
5 0.000 0.000 0.001 0.000 dataset.py:169(_merge_expand) | |
19 0.000 0.000 0.001 0.000 decorators.py:63(wrapper) | |
12 0.000 0.000 0.001 0.000 coordinates.py:130(merge) | |
38 0.000 0.000 0.000 0.000 common.py:112(_get_axis_num) | |
5 0.000 0.000 0.001 0.000 dataset.py:90(_expand_variables) | |
24 0.000 0.000 0.000 0.000 utils.py:115(remove_incompatible_items) | |
12 0.000 0.000 0.000 0.000 _methods.py:43(_count_reduce_items) | |
12 0.000 0.000 0.000 0.000 common.py:2094(is_bool_indexer) | |
12 0.000 0.000 0.000 0.000 coordinates.py:93(_merge_validate) | |
6 0.000 0.000 0.000 0.000 dataset.py:119(add_variable) | |
156 0.000 0.000 0.000 0.000 core.py:830(<genexpr>) | |
2 0.000 0.000 0.000 0.000 {method 'unique' of 'pandas.hashtable.PyObjectHashTable' objects} | |
5 0.000 0.000 0.001 0.000 alignment.py:89(partial_align) | |
2 0.000 0.000 0.000 0.000 {method 'take' of 'numpy.ndarray' objects} | |
48 0.000 0.000 0.000 0.000 variable.py:323(<genexpr>) | |
31 0.000 0.000 0.000 0.000 {pandas.tslib.maybe_get_tz} | |
22 0.000 0.000 0.000 0.000 alignment.py:14(_get_joiner) | |
108 0.000 0.000 0.000 0.000 core.py:828(<genexpr>) | |
36 0.000 0.000 0.000 0.000 core.py:1130(<genexpr>) | |
41 0.000 0.000 0.000 0.000 dataset.py:723(indexes) | |
13 0.000 0.000 0.000 0.000 utils.py:307(__getitem__) | |
156 0.000 0.000 0.000 0.000 core.py:826(<genexpr>) | |
1 0.000 0.000 11.307 11.307 groupby.py:420(apply) | |
69 0.000 0.000 0.000 0.000 index.py:272(dtype) | |
3 0.000 0.000 0.000 0.000 {numpy.core.multiarray.arange} | |
38 0.000 0.000 0.000 0.000 utils.py:40(safe_cast_to_index) | |
12 0.000 0.000 0.000 0.000 indexing.py:352(__array__) | |
48 0.000 0.000 0.000 0.000 variable.py:233(_indexable_data) | |
48 0.000 0.000 0.000 0.000 inspect.py:67(ismethod) | |
135 0.000 0.000 0.000 0.000 {method 'iteritems' of 'dict' objects} | |
12 0.000 0.000 0.000 0.000 dataset.py:420(_attrs_copy) | |
12 0.000 0.000 0.000 0.000 fromnumeric.py:2651(mean) | |
31 0.000 0.000 0.000 0.000 dataset.py:1052(reindex) | |
58 0.000 0.000 0.000 0.000 {any} | |
3 0.000 0.000 0.000 0.000 common.py:323(_possibly_convert_objects) | |
12 0.000 0.000 0.000 0.000 warnings.py:340(__enter__) | |
48 0.000 0.000 0.000 0.000 <string>:8(__new__) | |
12 0.000 0.000 0.000 0.000 warnings.py:75(simplefilter) | |
99 0.000 0.000 0.000 0.000 utils.py:286(__contains__) | |
12 0.000 0.000 0.000 0.000 _abcoll.py:408(keys) | |
48 0.000 0.000 0.000 0.000 common.py:110(<genexpr>) | |
71 0.000 0.000 0.000 0.000 dataset.py:587(__contains__) | |
2 0.000 0.000 0.000 0.000 common.py:2320(_asarray_tuplesafe) | |
12 0.000 0.000 0.000 0.000 functoolz.py:382(compose) | |
48 0.000 0.000 0.000 0.000 inspect.py:142(isfunction) | |
48 0.000 0.000 0.000 0.000 slicing.py:178(<genexpr>) | |
30 0.000 0.000 0.000 0.000 dataset.py:736(data_vars) | |
1 0.000 0.000 0.000 0.000 base.py:139(_maybe_mask_results) | |
1 0.000 0.000 0.000 0.000 {pandas.algos.ensure_int64} | |
24 0.000 0.000 0.000 0.000 {method 'all' of 'numpy.ndarray' objects} | |
2 0.000 0.000 0.000 0.000 _methods.py:37(_any) | |
5 0.000 0.000 0.000 0.000 dataset.py:324(_add_missing_coords_inplace) | |
12 0.000 0.000 0.000 0.000 contextlib.py:82(helper) | |
87 0.000 0.000 0.000 0.000 {method 'iteritems' of 'cyordereddict._cyordereddict.OrderedDict' objects} | |
48 0.000 0.000 0.000 0.000 functoolz.py:180(func) | |
60 0.000 0.000 0.000 0.000 variable.py:929(<genexpr>) | |
31 0.000 0.000 0.000 0.000 common.py:59(_check) | |
18 0.000 0.000 0.000 0.000 dataset.py:224(__iter__) | |
90 0.000 0.000 0.000 0.000 dataarray.py:242(name) | |
97 0.000 0.000 0.000 0.000 utils.py:271(__getitem__) | |
12 0.000 0.000 0.000 0.000 warnings.py:356(__exit__) | |
45 0.000 0.000 0.000 0.000 coordinates.py:199(__init__) | |
2 0.000 0.000 0.000 0.000 algorithms.py:89(_unique_generic) | |
6 0.000 0.000 0.000 0.000 dataset.py:62(_as_dataset_variable) | |
48 0.000 0.000 0.000 0.000 inspect.py:209(iscode) | |
5 0.000 0.000 0.007 0.001 dataset.py:1189(update) | |
6 0.000 0.000 0.000 0.000 _abcoll.py:386(__contains__) | |
26 0.000 0.000 0.000 0.000 nputils.py:38(<genexpr>) | |
1 0.000 0.000 0.000 0.000 {numpy.core.multiarray.putmask} | |
48 0.000 0.000 0.000 0.000 functoolz.py:184(args) | |
12 0.000 0.000 0.000 0.000 {max} | |
13 0.000 0.000 0.000 0.000 common.py:123(__attr_sources__) | |
12 0.000 0.000 0.000 0.000 warnings.py:319(__init__) | |
17 0.000 0.000 0.000 0.000 {method 'split' of 'str' objects} | |
3 0.000 0.000 0.000 0.000 {method 'reshape' of 'numpy.ndarray' objects} | |
24 0.000 0.000 0.000 0.000 _methods.py:40(_all) | |
1 0.000 0.000 0.000 0.000 core.py:936(<genexpr>) | |
30 0.000 0.000 0.000 0.000 dataset.py:221(__init__) | |
60 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} | |
48 0.000 0.000 0.000 0.000 indexing.py:348(dtype) | |
12 0.000 0.000 0.000 0.000 coordinates.py:10(_coord_merge_finalize) | |
24 0.000 0.000 0.000 0.000 indexing.py:329(<genexpr>) | |
12 0.000 0.000 0.000 0.000 dataset.py:1543(<genexpr>) | |
11 0.000 0.000 0.000 0.000 alignment.py:99(<genexpr>) | |
38 0.000 0.000 0.000 0.000 {method 'index' of 'tuple' objects} | |
13 0.000 0.000 0.001 0.000 dataset.py:208(as_dataset) | |
13 0.000 0.000 0.000 0.000 variable.py:131(_as_array_or_item) | |
5 0.000 0.000 0.000 0.000 coordinates.py:43(__getitem__) | |
12 0.000 0.000 0.000 0.000 variable.py:201(dtype) | |
13 0.000 0.000 0.000 0.000 variable.py:255(values) | |
3 0.000 0.000 0.000 0.000 common.py:1859(_possibly_convert_objects) | |
2 0.000 0.000 0.000 0.000 index.py:1477(equals) | |
84 0.000 0.000 0.000 0.000 {id} | |
10 0.000 0.000 0.000 0.000 {method 'items' of 'cyordereddict._cyordereddict.OrderedDict' objects} | |
1 0.000 0.000 0.000 0.000 ops.py:88(_interleaved_indices_required) | |
12 0.000 0.000 0.000 0.000 numeric.py:464(asanyarray) | |
12 0.000 0.000 0.000 0.000 {method 'insert' of 'list' objects} | |
7 0.000 0.000 0.000 0.000 dataarray.py:383(coords) | |
1 0.000 0.000 0.001 0.001 index.py:44(f) | |
1 0.000 0.000 0.014 0.014 common.py:191(groupby) | |
46 0.000 0.000 0.000 0.000 alignment.py:43(<genexpr>) | |
36 0.000 0.000 0.000 0.000 core.py:1139(<genexpr>) | |
26 0.000 0.000 0.000 0.000 dataset.py:423(attrs) | |
12 0.000 0.000 0.001 0.000 coordinates.py:80(to_dataset) | |
5 0.000 0.000 0.007 0.001 dataset.py:623(__setitem__) | |
54 0.000 0.000 0.000 0.000 index.py:1458(dtype) | |
12 0.000 0.000 0.000 0.000 contextlib.py:15(__enter__) | |
12 0.000 0.000 0.000 0.000 reductions.py:30(<genexpr>) | |
132 0.000 0.000 0.000 0.000 {method 'pop' of 'dict' objects} | |
2 0.000 0.000 0.000 0.000 nputils.py:36(_calc_concat_shape) | |
48 0.000 0.000 0.000 0.000 variable.py:586(<genexpr>) | |
12 0.000 0.000 0.000 0.000 utils.py:74(equivalent) | |
24 0.000 0.000 0.000 0.000 core.py:561(dtype) | |
2 0.000 0.000 0.000 0.000 algorithms.py:51(unique) | |
6 0.000 0.000 0.000 0.000 index.py:2623(asi8) | |
2 0.000 0.000 0.000 0.000 algorithms.py:69(_hashtable_algo) | |
9 0.000 0.000 0.000 0.000 common.py:2434(_get_dtype_type) | |
19 0.000 0.000 0.000 0.000 frequencies.py:289(to_offset) | |
6 0.000 0.000 0.000 0.000 variable.py:19(as_variable) | |
12 0.000 0.000 0.000 0.000 ops.py:52(_dask_or_eager_func) | |
12 0.000 0.000 0.000 0.000 dataset.py:231(__contains__) | |
4 0.000 0.000 0.000 0.000 indexing.py:205(dtype) | |
12 0.000 0.000 0.000 0.000 _abcoll.py:379(get) | |
2 0.000 0.000 0.012 0.006 utils.py:84(peek_at) | |
12 0.000 0.000 0.000 0.000 variable.py:361(encoding) | |
15 0.000 0.000 0.000 0.000 dataset.py:170(<genexpr>) | |
1 0.000 0.000 11.307 11.307 groupby.py:453(_concat) | |
8 0.000 0.000 0.000 0.000 dataarray.py:310(dims) | |
1 0.000 0.000 0.000 0.000 _weakrefset.py:58(__iter__) | |
3 0.000 0.000 0.000 0.000 common.py:2449(is_integer_dtype) | |
1 0.000 0.000 0.000 0.000 dataset.py:275(__init__) | |
31 0.000 0.000 0.000 0.000 utils.py:144(combine_pos_and_kw_args) | |
1 0.000 0.000 0.000 0.000 variable.py:912(broadcast_variables) | |
1 0.000 0.000 0.000 0.000 utils.py:341(size) | |
1 0.000 0.000 0.000 0.000 {reduce} | |
1 0.000 0.000 0.000 0.000 algorithms.py:403(_get_data_algo) | |
17 0.000 0.000 0.000 0.000 dataset.py:203(_assert_empty) | |
2 0.000 0.000 0.000 0.000 {method 'any' of 'numpy.ndarray' objects} | |
2 0.000 0.000 0.000 0.000 dataarray.py:550(reindex) | |
7 0.000 0.000 0.000 0.000 coordinates.py:181(__init__) | |
1 0.000 0.000 0.000 0.000 _weakrefset.py:26(__exit__) | |
3 0.000 0.000 0.000 0.000 {method 'ravel' of 'numpy.ndarray' objects} | |
12 0.000 0.000 0.000 0.000 utils.py:247(__len__) | |
12 0.000 0.000 0.000 0.000 ops.py:149(asarray) | |
12 0.000 0.000 0.000 0.000 utils.py:283(__len__) | |
1 0.000 0.000 0.000 0.000 fromnumeric.py:2259(prod) | |
2 0.000 0.000 0.000 0.000 algorithms.py:65(<lambda>) | |
24 0.000 0.000 0.000 0.000 {method 'extend' of 'list' objects} | |
2 0.000 0.000 0.000 0.000 index.py:2586(__new__) | |
12 0.000 0.000 0.000 0.000 contextlib.py:12(__init__) | |
2 0.000 0.000 0.000 0.000 dataarray.py:327(__getitem__) | |
12 0.000 0.000 0.000 0.000 {method 'copy' of 'set' objects} | |
1 0.000 0.000 0.000 0.000 common.py:2480(is_datetime_or_timedelta_dtype) | |
1 0.000 0.000 0.000 0.000 {method 'argsort' of 'numpy.ndarray' objects} | |
12 0.000 0.000 0.000 0.000 indexing.py:324(__init__) | |
3 0.000 0.000 0.000 0.000 common.py:2501(is_float_dtype) | |
1 0.000 0.000 0.000 0.000 dataset.py:107(maybe_promote_or_replace) | |
1 0.000 0.000 0.000 0.000 {method 'to_array' of 'pandas.hashtable.Int64Vector' objects} | |
1 0.000 0.000 0.000 0.000 _abcoll.py:98(__subclasshook__) | |
5 0.000 0.000 0.000 0.000 utils.py:315(__setitem__) | |
4 0.000 0.000 0.000 0.000 dataarray.py:377(indexes) | |
2 0.000 0.000 0.000 0.000 dataarray.py:219(_with_replaced_dataset) | |
1 0.000 0.000 0.000 0.000 dataset.py:1652(<genexpr>) | |
1 0.000 0.000 0.000 0.000 groupby.py:177(_infer_concat_args) | |
5 0.000 0.000 0.000 0.000 dataset.py:596(__iter__) | |
3 0.000 0.000 0.000 0.000 dataset.py:1669(<genexpr>) | |
5 0.000 0.000 0.000 0.000 utils.py:304(__init__) | |
2 0.000 0.000 0.000 0.000 nputils.py:7(_validate_axis) | |
2 0.000 0.000 0.000 0.000 dataarray.py:344(__attr_sources__) | |
1 0.000 0.000 0.000 0.000 indexing.py:189(__init__) | |
2 0.000 0.000 0.000 0.000 dataarray.py:358(attrs) | |
12 0.000 0.000 0.000 0.000 functoolz.py:365(__init__) | |
4 0.000 0.000 0.000 0.000 indexing.py:201(shape) | |
3 0.000 0.000 0.000 0.000 variable.py:924(<genexpr>) | |
3 0.000 0.000 0.000 0.000 dataset.py:1666(<genexpr>) | |
1 0.000 0.000 0.000 0.000 {method 'put' of 'numpy.ndarray' objects} | |
1 0.000 0.000 0.000 0.000 dataset.py:431(attrs) | |
1 0.000 0.000 0.000 0.000 variable.py:735(broadcast_equals) | |
1 0.000 0.000 0.000 0.000 indexing.py:220(__array__) | |
1 0.000 0.000 0.000 0.000 dataarray.py:291(values) | |
1 0.000 0.000 0.000 0.000 dataarray.py:279(ndim) | |
1 0.000 0.000 0.000 0.000 _weakrefset.py:20(__enter__) | |
1 0.000 0.000 0.000 0.000 _weakrefset.py:52(_commit_removals) | |
4 0.000 0.000 0.000 0.000 {pandas.algos.ensure_object} | |
1 0.000 0.000 0.000 0.000 dataarray.py:275(size) | |
1 0.000 0.000 0.000 0.000 common.py:75(__array__) | |
1 0.000 0.000 0.000 0.000 variable.py:269(to_coord) | |
2 0.000 0.000 0.000 0.000 index.py:232(is_) | |
1 0.000 0.000 0.000 0.000 _weakrefset.py:83(add) | |
1 0.000 0.000 0.000 0.000 _methods.py:34(_prod) | |
1 0.000 0.000 0.000 0.000 common.py:2461(is_datetime64_dtype) | |
1 0.000 0.000 0.000 0.000 common.py:2470(is_timedelta64_dtype) | |
1 0.000 0.000 0.000 0.000 {method 'discard' of 'set' objects} | |
1 0.000 0.000 0.000 0.000 variable.py:228(_data_cached) | |
1 0.000 0.000 0.000 0.000 groupby.py:220(_maybe_restore_empty_groups) | |
4 0.000 0.000 0.000 0.000 index.py:1452(inferred_type) | |
1 0.000 0.000 0.000 0.000 _weakrefset.py:16(__init__) | |
1 0.000 0.000 0.000 0.000 index.py:256(__len__) | |
1 0.000 0.000 0.000 0.000 {pandas.algos.ensure_platform_int} | |
1 0.000 0.000 0.000 0.000 {method '__subclasses__' of 'type' objects} | |
1 0.000 0.000 0.000 0.000 {method 'remove' of 'set' objects} | |
3 0.000 0.000 0.000 0.000 variable.py:847(to_coord) | |
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment