Last active
March 31, 2017 08:57
-
-
Save shravan-kuchkula/9fb49a4e59eecbab7d3fb63c4ef91b4f to your computer and use it in GitHub Desktop.
Create a word cloud from a list of tweets.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Takes a list of status/twitter objects, extracts the text, | |
# cleans the text, calculates word frequencies and generates | |
# a word cloud. | |
generateWordCloud <- function(tweets){ | |
#Get the text from the status/twitter object | |
tweets_list <- sapply(tweets, function(x) x$getText()) | |
#Remove any weird symbols from the text | |
tweets_list <- str_replace_all(tweets_list, "[^[:graph:]]", " ") | |
#Convert it to a Corpus object. Use VectorSource. | |
tweetsCorpus <- Corpus(VectorSource(tweets_list)) | |
# Convert to lower | |
tweetsCorpus <- tm_map(tweetsCorpus, tolower) | |
# Remove punctuations | |
tweetsCorpus <- tm_map(tweetsCorpus, removePunctuation) | |
# Remove stop words | |
tweetsCorpus <- tm_map(tweetsCorpus, function(x) removeWords(x, stopwords("english"))) | |
# Create a TermDocumentMatrix object | |
dtm <- TermDocumentMatrix(tweetsCorpus) | |
# Calclate words and their freq's | |
m <- as.matrix(dtm) | |
v <- sort(rowSums(m), decreasing = TRUE) | |
d <- data.frame(word = names(v), freq=v) | |
# Create wordcloud | |
wordcloud(d$word, freq=d$freq, max.words = 25, random.order = FALSE, | |
random.color = TRUE, colors=brewer.pal(6, "Dark2")) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment