Last active
September 1, 2022 09:27
-
-
Save shravankumar147/056626de3fbdc7cf7b59de1d9f6279d1 to your computer and use it in GitHub Desktop.
Face Detection using dlib and opencv. It detects even multi-faces.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# USAGE | |
# python face_detection.py --image face1.jpg | |
# import the necessary packages | |
# from imutils import face_utils | |
# import numpy as np | |
import argparse | |
import imutils | |
import dlib | |
import cv2 | |
# from matplotlib import pyplot as plt | |
def rect_to_bb(rect): | |
# take a bounding predicted by dlib and convert it | |
# to the format (x, y, w, h) as we would normally do | |
# with OpenCV | |
x = rect.left() | |
y = rect.top() | |
w = rect.right() - x | |
h = rect.bottom() - y | |
# return a tuple of (x, y, w, h) | |
return (x, y, w, h) | |
# construct the argument parser and parse the arguments | |
ap = argparse.ArgumentParser() | |
ap.add_argument("-i", "--image", required=True, help="path to input image") | |
args = vars(ap.parse_args()) | |
# load the input image, resize it, and convert it to grayscale | |
image = cv2.imread(args["image"]) | |
image = imutils.resize(image, width=500) | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# initialize dlib's face detector (HOG-based) and then create | |
# the facial landmark predictor | |
detector = dlib.get_frontal_face_detector() | |
# detect faces in the grayscale image | |
rects = detector(gray, 1) | |
print(len(rects)) | |
fname = args["image"].split('/')[-1] | |
name, ext = fname.split('.') | |
# loop over the face detections | |
for (i, rect) in enumerate(rects): | |
# determine the facial landmarks for the face region, then | |
# convert the landmark (x, y)-coordinates to a NumPy array | |
(x, y, w, h) = rect_to_bb(rect) | |
print(i, x, y, w, h) | |
fname = '{}_{}.{}'.format(name, i, ext) | |
# clone the original image so we can draw on it, then | |
# display the name of the face part on the image | |
clone = image.copy() | |
cv2.rectangle(clone, (x, y), (x + w, y + h), (0, 255, 0), 1) | |
startX = x | |
startY = y - 15 if y - 15 > 15 else y + 15 | |
cv2.putText(clone, str(i), (startX, startY), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) | |
roi = image[y:y + h, x:x + w] | |
cv2.imshow("ROI", roi) | |
cv2.imwrite(fname, roi) | |
cv2.imshow("Image", clone) | |
cv2.waitKey(0) |
Hello,
How many face can your code of idx detect?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Instead of calling
rects = detector(gray, 1)
you can call
rects, scores, idx = detector.run(gray, 1, 0.25)
this will give you the rects and scores for each detection. The 0.25 sets a threshold confidence leve