Created
August 2, 2022 15:10
-
-
Save shravankumar147/3401d5d895f6efd24e1af0382c54ea53 to your computer and use it in GitHub Desktop.
LMDB Pytorch Data Loader
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# lmdbloader.py | |
import os | |
import lmdb | |
import pyarrow | |
import lz4framed | |
import numpy as np | |
from typing import Any | |
import nonechucks as nc | |
from torch.utils.data import Dataset, DataLoader | |
class InvalidFileException(Exception): | |
pass | |
class LMDBDataset(Dataset): | |
def __init__(self, lmdb_store_path, transform=None): | |
super().__init__() | |
assert os.path.isfile(lmdb_store_path), f"LMDB store '{lmdb_store_path} does not exist" | |
assert not os.path.isdir(lmdb_store_path), f"LMDB store name should a file, found directory: {lmdb_store_path}" | |
self.lmdb_store_path = lmdb_store_path | |
self.lmdb_connection = lmdb.open(lmdb_store_path, | |
subdir=False, readonly=True, lock=False, readahead=False, meminit=False) | |
with self.lmdb_connection.begin(write=False) as lmdb_txn: | |
self.length = lmdb_txn.stat()['entries'] - 1 | |
self.keys = pyarrow.deserialize(lz4framed.decompress(lmdb_txn.get(b'__keys__'))) | |
print(f"Total records: {len(self.keys), self.length}") | |
self.transform = transform | |
def __getitem__(self, index): | |
lmdb_value = None | |
with self.lmdb_connection.begin(write=False) as txn: | |
lmdb_value = txn.get(self.keys[index]) | |
assert lmdb_value is not None, f"Read empty record for key: {self.keys[index]}" | |
img_name, img_arr, img_shape = LMDBDataset.decompress_and_deserialize(lmdb_value=lmdb_value) | |
image = np.frombuffer(img_arr, dtype=np.uint8).reshape(img_shape) | |
if image.size == 0: | |
raise InvalidFileException("Invalid file found, skipping") | |
return image | |
@staticmethod | |
def decompress_and_deserialize(lmdb_value: Any): | |
return pyarrow.deserialize(lz4framed.decompress(lmdb_value)) | |
def __len__(self): | |
return self.length | |
if __name__ == '__main__': | |
dataset = nc.SafeDataset(LMDBDataset('./data/lmdb-tmp.db')) | |
batch_size = 64 | |
data_loader = DataLoader(dataset, shuffle=True, batch_size=batch_size, num_workers=4, pin_memory=False) | |
n_epochs = 50 | |
for _ in range(n_epochs): | |
for batch in data_loader: | |
assert len(batch) > 0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment