Forked from fchollet/classifier_from_little_data_script_1.py
Created
October 25, 2016 08:52
-
-
Save shravankumar147/4983623ce28575f5a9a7b38f8d2fca09 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''This script goes along the blog post | |
"Building powerful image classification models using very little data" | |
from blog.keras.io. | |
It uses data that can be downloaded at: | |
https://www.kaggle.com/c/dogs-vs-cats/data | |
In our setup, we: | |
- created a data/ folder | |
- created train/ and validation/ subfolders inside data/ | |
- created cats/ and dogs/ subfolders inside train/ and validation/ | |
- put the cat pictures index 0-999 in data/train/cats | |
- put the cat pictures index 1000-1400 in data/validation/cats | |
- put the dogs pictures index 12500-13499 in data/train/dogs | |
- put the dog pictures index 13500-13900 in data/validation/dogs | |
So that we have 1000 training examples for each class, and 400 validation examples for each class. | |
In summary, this is our directory structure: | |
``` | |
data/ | |
train/ | |
dogs/ | |
dog001.jpg | |
dog002.jpg | |
... | |
cats/ | |
cat001.jpg | |
cat002.jpg | |
... | |
validation/ | |
dogs/ | |
dog001.jpg | |
dog002.jpg | |
... | |
cats/ | |
cat001.jpg | |
cat002.jpg | |
... | |
``` | |
''' | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras.models import Sequential | |
from keras.layers import Convolution2D, MaxPooling2D | |
from keras.layers import Activation, Dropout, Flatten, Dense | |
# dimensions of our images. | |
img_width, img_height = 150, 150 | |
train_data_dir = 'data/train' | |
validation_data_dir = 'data/validation' | |
nb_train_samples = 2000 | |
nb_validation_samples = 800 | |
nb_epoch = 50 | |
model = Sequential() | |
model.add(Convolution2D(32, 3, 3, input_shape=(3, img_width, img_height))) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Convolution2D(32, 3, 3)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Convolution2D(64, 3, 3)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Flatten()) | |
model.add(Dense(64)) | |
model.add(Activation('relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(1)) | |
model.add(Activation('sigmoid')) | |
model.compile(loss='binary_crossentropy', | |
optimizer='rmsprop', | |
metrics=['accuracy']) | |
# this is the augmentation configuration we will use for training | |
train_datagen = ImageDataGenerator( | |
rescale=1./255, | |
shear_range=0.2, | |
zoom_range=0.2, | |
horizontal_flip=True) | |
# this is the augmentation configuration we will use for testing: | |
# only rescaling | |
test_datagen = ImageDataGenerator(rescale=1./255) | |
train_generator = train_datagen.flow_from_directory( | |
train_data_dir, | |
target_size=(img_width, img_height), | |
batch_size=32, | |
class_mode='binary') | |
validation_generator = test_datagen.flow_from_directory( | |
validation_data_dir, | |
target_size=(img_width, img_height), | |
batch_size=32, | |
class_mode='binary') | |
model.fit_generator( | |
train_generator, | |
samples_per_epoch=nb_train_samples, | |
nb_epoch=nb_epoch, | |
validation_data=validation_generator, | |
nb_val_samples=nb_validation_samples) | |
model.load_weights('first_try.h5') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment