-
-
Save shravankumar147/9f27d2b74e28913698860cd509842c9a to your computer and use it in GitHub Desktop.
Simple Feedforward Neural Network using TensorFlow
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Implementation of a simple MLP network with one hidden layer. Tested on the iris data set. | |
# Requires: numpy, sklearn>=0.18.1, tensorflow>=1.0 | |
# NOTE: In order to make the code simple, we rewrite x * W_1 + b_1 = x' * W_1' | |
# where x' = [x | 1] and W_1' is the matrix W_1 appended with a new row with elements b_1's. | |
# Similarly, for h * W_2 + b_2 | |
import tensorflow as tf | |
import numpy as np | |
from sklearn import datasets | |
from sklearn.model_selection import train_test_split | |
RANDOM_SEED = 42 | |
tf.set_random_seed(RANDOM_SEED) | |
def init_weights(shape): | |
""" Weight initialization """ | |
weights = tf.random_normal(shape, stddev=0.1) | |
return tf.Variable(weights) | |
def forwardprop(X, w_1, w_2): | |
""" | |
Forward-propagation. | |
IMPORTANT: yhat is not softmax since TensorFlow's softmax_cross_entropy_with_logits() does that internally. | |
""" | |
h = tf.nn.sigmoid(tf.matmul(X, w_1)) # The \sigma function | |
yhat = tf.matmul(h, w_2) # The \varphi function | |
return yhat | |
def get_iris_data(): | |
""" Read the iris data set and split them into training and test sets """ | |
iris = datasets.load_iris() | |
data = iris["data"] | |
target = iris["target"] | |
# Prepend the column of 1s for bias | |
N, M = data.shape | |
all_X = np.ones((N, M + 1)) | |
all_X[:, 1:] = data | |
# Convert into one-hot vectors | |
num_labels = len(np.unique(target)) | |
all_Y = np.eye(num_labels)[target] # One liner trick! | |
return train_test_split(all_X, all_Y, test_size=0.33, random_state=RANDOM_SEED) | |
def main(): | |
train_X, test_X, train_y, test_y = get_iris_data() | |
# Layer's sizes | |
x_size = train_X.shape[1] # Number of input nodes: 4 features and 1 bias | |
h_size = 256 # Number of hidden nodes | |
y_size = train_y.shape[1] # Number of outcomes (3 iris flowers) | |
# Symbols | |
X = tf.placeholder("float", shape=[None, x_size]) | |
y = tf.placeholder("float", shape=[None, y_size]) | |
# Weight initializations | |
w_1 = init_weights((x_size, h_size)) | |
w_2 = init_weights((h_size, y_size)) | |
# Forward propagation | |
yhat = forwardprop(X, w_1, w_2) | |
predict = tf.argmax(yhat, axis=1) | |
# Backward propagation | |
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=yhat)) | |
updates = tf.train.GradientDescentOptimizer(0.01).minimize(cost) | |
# Run SGD | |
sess = tf.Session() | |
init = tf.global_variables_initializer() | |
sess.run(init) | |
for epoch in range(100): | |
# Train with each example | |
for i in range(len(train_X)): | |
sess.run(updates, feed_dict={X: train_X[i: i + 1], y: train_y[i: i + 1]}) | |
train_accuracy = np.mean(np.argmax(train_y, axis=1) == | |
sess.run(predict, feed_dict={X: train_X, y: train_y})) | |
test_accuracy = np.mean(np.argmax(test_y, axis=1) == | |
sess.run(predict, feed_dict={X: test_X, y: test_y})) | |
print("Epoch = %d, train accuracy = %.2f%%, test accuracy = %.2f%%" | |
% (epoch + 1, 100. * train_accuracy, 100. * test_accuracy)) | |
sess.close() | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment