Skip to content

Instantly share code, notes, and snippets.

View shreyansh26's full-sized avatar
👨‍🎓
Always Learning

Shreyansh Singh shreyansh26

👨‍🎓
Always Learning
View GitHub Profile
ncu --list-sets  # The configuration for sets. A set defines a set of sections.
ncu --list-sections  # The configuration for sections. A section defines a set of metrics.
ncu --query-metrics   # All individual metrics.
ncu --query-metrics-mode suffix --metrics <metrics list> # Check various suffixes for a base metric name.

ncu_cli

from dataclasses import dataclass
@dataclass
class Args:
vocab_size: int = 129280
dim: int = 7168
inter_dim: int = 18432
moe_inter_dim: int = 2048
n_layers: int = 61
@shreyansh26
shreyansh26 / 1-pw_op_fusion.py
Created December 27, 2024 08:37 — forked from Chillee/1-pw_op_fusion.py
PT 2.0 Benchmarks
import torch
import torch._inductor.config
import time
torch._inductor.config.triton.cudagraphs = False
torch.set_float32_matmul_precision('high')
def bench(f, name=None, iters=100, warmup=5, display=True, profile=False):
for _ in range(warmup):
f()
@shreyansh26
shreyansh26 / pos_embed.py
Created April 24, 2023 06:29 — forked from huchenxucs/pos_embed.py
T5 relative positional embedding
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
class RelativePositionBias(nn.Module):
def __init__(self, bidirectional=True, num_buckets=32, max_distance=128, n_heads=2):
super(RelativePositionBias, self).__init__()
self.bidirectional = bidirectional
@shreyansh26
shreyansh26 / LinearLayer.py
Created April 12, 2023 15:42 — forked from RafayAK/LinearLayer.py
Class for Linear Layer
import numpy as np # import numpy library
from util.paramInitializer import initialize_parameters # import function to initialize weights and biases
class LinearLayer:
"""
This Class implements all functions to be executed by a linear layer
in a computational graph
Args: