Skip to content

Instantly share code, notes, and snippets.

View shreyansh26's full-sized avatar
👨‍🎓
Always Learning

Shreyansh Singh shreyansh26

👨‍🎓
Always Learning
View GitHub Profile
ncu --list-sets  # The configuration for sets. A set defines a set of sections.
ncu --list-sections  # The configuration for sections. A section defines a set of metrics.
ncu --query-metrics   # All individual metrics.
ncu --query-metrics-mode suffix --metrics <metrics list> # Check various suffixes for a base metric name.

ncu_cli

from dataclasses import dataclass
@dataclass
class Args:
vocab_size: int = 129280
dim: int = 7168
inter_dim: int = 18432
moe_inter_dim: int = 2048
n_layers: int = 61
import sklearn
import torch
from sentence_transformers import SentenceTransformer
import torch.nn.functional as F
def get_score_diff(vectors):
scores = torch.matmul(vectors, vectors.T)
scores = scores[torch.triu(torch.ones_like(scores), diagonal=1).bool()]
score_diff = scores.reshape((1, -1)) - scores.reshape((-1, 1))
score_diff = score_diff[torch.triu(torch.ones_like(score_diff), diagonal=1).bool()]
@shreyansh26
shreyansh26 / 1-pw_op_fusion.py
Created December 27, 2024 08:37 — forked from Chillee/1-pw_op_fusion.py
PT 2.0 Benchmarks
import torch
import torch._inductor.config
import time
torch._inductor.config.triton.cudagraphs = False
torch.set_float32_matmul_precision('high')
def bench(f, name=None, iters=100, warmup=5, display=True, profile=False):
for _ in range(warmup):
f()
import json
import sentencepiece as spm
import sentencepiece.sentencepiece_model_pb2 as sp_pb2
from google.protobuf.json_format import MessageToDict
PATH = "tokenizer.model"
s = spm.SentencePieceProcessor(model_file=PATH)
from transformers import AutoModelForCausalLM, AutoTokenizer
tok = AutoTokenizer.from_pretrained("distilgpt2")
model = AutoModelForCausalLM.from_pretrained("distilgpt2")
inputs = tok(["Hello how"], return_tensors="pt")
len_inp = len(inputs.input_ids[0])
print(len_inp)
generated = model.generate(**inputs, do_sample=False, max_new_tokens=10)
@shreyansh26
shreyansh26 / pos_embed.py
Created April 24, 2023 06:29 — forked from huchenxucs/pos_embed.py
T5 relative positional embedding
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
class RelativePositionBias(nn.Module):
def __init__(self, bidirectional=True, num_buckets=32, max_distance=128, n_heads=2):
super(RelativePositionBias, self).__init__()
self.bidirectional = bidirectional
@shreyansh26
shreyansh26 / LinearLayer.py
Created April 12, 2023 15:42 — forked from RafayAK/LinearLayer.py
Class for Linear Layer
import numpy as np # import numpy library
from util.paramInitializer import initialize_parameters # import function to initialize weights and biases
class LinearLayer:
"""
This Class implements all functions to be executed by a linear layer
in a computational graph
Args:
#!/usr/bin/python
from z3 import *
s = [BitVec("s[%d]" % i,32)for i in range(0,8)]
# shouldve
z3_solver = Solver()
flag = ""
for i in range(0,len(s)):
if(strlen(input) != 23) {
print_wrong;
return 0;
}
if((input[4] ^ 0x6c) != 0) {
print_wrong;
return 0;
}
if(input[3] + 1 != input[6]) {