Created
October 6, 2020 03:51
-
-
Save shreyas90999/c1ad82074da017cee9e04fe843af3298 to your computer and use it in GitHub Desktop.
stats
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # ref - https://www.kaggle.com/gspmoreira/cnn-glove-single-model-private-lb-0-41117-35th | |
| def generate_cbs_stats(train,test): | |
| df_group = train.groupby('cat_brand_ship',as_index = False).agg({"shipping" : len, | |
| "log_price" : [np.median, np.mean, np.std,np.min,np.max]}) | |
| df_group.columns = ['cat_brand_ship','cbs_count','cbs_log_price_median','cbs_log_price_mean','cbs_log_price_std', | |
| 'cbs_log_price_min','cbs_log_price_max'] | |
| df_group['cbs_log_price_std'] = df_group['cbs_log_price_std'].fillna(0) | |
| df_group['cbs_log_price_conf_variance'] = df_group['cbs_log_price_std'] / df_group['cbs_log_price_mean'] | |
| df_group['cbs_log_count'] = np.log1p(df_group['cbs_count']) | |
| df_group['cbs_min_expected_log_price'] = (df_group['cbs_log_price_mean'] - (df_group['cbs_log_price_std']*2)).clip(lower=1.0) | |
| df_group['cbs_max_expected_log_price'] = (df_group['cbs_log_price_mean'] + (df_group['cbs_log_price_std']*2)) | |
| df_group_stats = test.merge(df_group.reset_index(), | |
| how = 'left', | |
| on = 'cat_brand_ship')[['cbs_log_count', | |
| 'cbs_log_price_mean', | |
| 'cbs_log_price_std', | |
| 'cbs_log_price_conf_variance', | |
| 'cbs_min_expected_log_price', | |
| 'cbs_max_expected_log_price', | |
| 'cbs_log_price_min', | |
| 'cbs_log_price_max']].fillna(0).values | |
| scaler = StandardScaler(copy=True) | |
| cbs_feats_scaled = scaler.fit_transform(df_group_stats) | |
| return cbs_feats_scaled |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment