Last active
May 15, 2019 16:31
-
-
Save shreydesai/cf9badef69ca59fcee0082d57ffc1683 to your computer and use it in GitHub Desktop.
Text CNN baseline
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
device = 'cuda' is torch.cuda.is_available() else 'cpu' | |
class NgramModule(nn.Module): | |
def __init__(self, seq_len, kernel, channels): | |
super().__init__() | |
self.conv = nn.Conv2d(1, channels, kernel) | |
self.pool = nn.MaxPool1d(seq_len - kernel[0] + 1) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x): | |
x = self.relu(self.conv(x)).squeeze(-1) | |
return self.pool(x).squeeze(-1) | |
class CNN(nn.Module): | |
def __init__(self, ksizes, n_channels, embedding_dim, seq_len, | |
dropout, n_classes, pretrained): | |
super().__init__() | |
self.embedding = nn.Embedding.from_pretrained(pretrained, freeze=False) | |
self.blocks = [NgramModule(seq_len, (ksize, embedding_dim), \ | |
n_channels).to(device) for ksize in ksizes] | |
self.dropout = nn.Dropout(dropout) | |
self.fc = nn.Linear(n_channels*len(ksizes), n_classes) | |
def forward(self, x): | |
x = self.embedding(x)[:,None,:,:] # [B,1,T,E] | |
x = torch.cat([block(x) for block in self.blocks], dim=-1).to(device) | |
return self.fc(self.dropout(x)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment