Created
November 25, 2013 04:09
-
-
Save shriphani/7636234 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/env python | |
| #-*- coding: utf-8 -*- | |
| # Copyright 2013 Subhodeep Moitra, all rights reserved | |
| # [email protected], [email protected] | |
| import sys, os | |
| import argparse | |
| import numpy as np | |
| from pypropack import svdp; | |
| from scipy.io import loadmat | |
| MAX_ITERS = 1000 | |
| TOL = 1.0e-7 | |
| def process_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| '--mat-file', | |
| metavar = 'mat_file', | |
| help = 'Location to .mat file' | |
| ) | |
| parser.add_argument( | |
| '--test', | |
| dest = 'test', | |
| default = False, | |
| action = 'store_true' | |
| ) | |
| parser.add_argument( | |
| ) | |
| return parser.parse_args() | |
| def choose_svd(n, sv): | |
| return True | |
| def converged(Z, d_norm): | |
| err = np.linalg.norm(Z, 'fro') / d_norm | |
| print 'ERR', err | |
| return err < TOL | |
| def pcp(X): | |
| m, n = X.shape | |
| # Set params | |
| lamda = 1./ np.sqrt(m); | |
| # Initialize | |
| Y = X; | |
| u, s, v = svdp(Y, k=1, which='L'); | |
| norm_two = s[0] | |
| norm_inf = np.linalg.norm( Y[:], np.inf) / lamda; | |
| dual_norm = max(norm_two, norm_inf); | |
| Y = Y / dual_norm; | |
| A_hat = np.zeros((m, n)); | |
| E_hat = np.zeros((m, n)); | |
| mu = 1.25/norm_two | |
| mu_bar = mu * 1e7 | |
| rho = 1.5 | |
| d_norm = np.linalg.norm(X, 'fro'); | |
| num_iters = 0; | |
| total_svd = 0; | |
| stopCriterion = 1; | |
| sv = 10; | |
| while True: | |
| num_iters += 1; | |
| temp_T = X - A_hat + (1/mu)*Y; | |
| E_hat = np.maximum(temp_T - lamda/mu, 0); | |
| E_hat = E_hat + np.minimum(temp_T + lamda/mu, 0); | |
| u, s, v = svdp(X - E_hat + (1/mu)*Y, sv, which = 'L'); | |
| diagS = np.diag(s); | |
| svp = len(np.where(s > 1/mu)) | |
| if svp < sv: | |
| sv = min(svp + 1, n); | |
| else: | |
| sv = min(svp + round(0.05*n), n); | |
| A_hat = np.dot( | |
| np.dot( | |
| u[:,0:svp], | |
| np.diag(s[0:svp] - 1/mu) | |
| ), | |
| v[0:svp,:] | |
| ) | |
| total_svd = total_svd + 1; | |
| Z = X - A_hat - E_hat; | |
| Y = Y + mu*Z; | |
| mu = min(mu*rho, mu_bar); | |
| if converged(Z, d_norm) or num_iters >= MAX_ITERS: | |
| return A_hat, E_hat | |
| if __name__ == '__main__': | |
| args = process_args() | |
| # Load Data | |
| if not args.test: | |
| data = loadmat(args.mat_file) | |
| A_hat, E_hat = pcp(data['X']) | |
| print A_hat, E_hat | |
| else: | |
| data = (10*np.ones((10, 10))) + (-5 * np.eye(10)) | |
| print data | |
| A_hat, E_hat = pcp(data) | |
| np.save('low_rank', A_hat) | |
| np.save('sparse', E_hat) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment