Last active
August 14, 2023 06:28
-
-
Save shunsukeaihara/8080887 to your computer and use it in GitHub Desktop.
Change finder algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
import numpy as np | |
import math | |
def LevinsonDurbin(r, lpcOrder): | |
""" | |
from http://aidiary.hatenablog.com/entry/20120415/1334458954 | |
""" | |
a = np.zeros(lpcOrder + 1,dtype=np.float64) | |
e = np.zeros(lpcOrder + 1,dtype=np.float64) | |
a[0] = 1.0 | |
a[1] = - r[1] / r[0] | |
e[1] = r[0] + r[1] * a[1] | |
lam = - r[1] / r[0] | |
for k in range(1, lpcOrder): | |
lam = 0.0 | |
for j in range(k + 1): | |
lam -= a[j] * r[k + 1 - j] | |
lam /= e[k] | |
U = [1] | |
U.extend([a[i] for i in range(1, k + 1)]) | |
U.append(0) | |
V = [0] | |
V.extend([a[i] for i in range(k, 0, -1)]) | |
V.append(1) | |
a = np.array(U) + lam * np.array(V) | |
e[k + 1] = e[k] * (1.0 - lam * lam) | |
return a, e[-1] | |
class _SDAR_1Dim(object): | |
def __init__(self, r, order): | |
self._r = r | |
self._mu = np.random.random() | |
self._sigma = np.random.random() | |
self._order = order | |
self._c = np.zeros(self._order+1) | |
def update(self,x,term): | |
assert len(term) >= self._order, "term must be order or more" | |
term = np.array(term) | |
self._mu = (1 - self._r) * self._mu + self._r * x | |
for i in range(1,self._order): | |
self._c[i] = (1-self._r)*self._c[i]+self._r * (x-self._mu) * (term[-i]-self._mu) | |
self._c[0] = (1-self._r)*self._c[0]+self._r * (x-self._mu)*(x-self._mu) | |
what,e = LevinsonDurbin(self._c,self._order) | |
xhat = np.dot(-what[1:],(term[::-1] - self._mu))+self._mu | |
self._sigma = (1-self._r)*self._sigma + self._r * (x-xhat) * (x-xhat) | |
return -math.log(math.exp(-0.5 *(x-xhat)**2/self._sigma)/((2 * math.pi)**0.5 * self._sigma**0.5)),xhat | |
class _ChangeFinderAbstract(object): | |
def _add_one(self,one,ts,size): | |
ts.append(one) | |
if len(ts)==size+1: | |
ts.pop(0) | |
def _smoothing(self,ts): | |
return sum(ts)/float(len(ts)) | |
class ChangeFinder(_ChangeFinderAbstract): | |
def __init__(self, r = 0.5, order = 1, smooth=7): | |
assert order > 0, "order must be 1 or more." | |
assert smooth > 2, "term must be 3 or more." | |
self._smooth = smooth | |
self._smooth2 = int(round(self._smooth/2.0)) | |
self._order = order | |
self._r = r | |
self._ts = [] | |
self._first_scores = [] | |
self._smoothed_scores = [] | |
self._second_scores = [] | |
self._sdar_first = _SDAR_1Dim(r,self._order) | |
self._sdar_second = _SDAR_1Dim(r,self._order) | |
def update(self,x): | |
score = 0 | |
predict = x | |
predict2 = 0 | |
if len(self._ts) == self._order:#第一段学習 | |
score,predict = self._sdar_first.update(x,self._ts) | |
self._add_one(score,self._first_scores,self._smooth) | |
self._add_one(x,self._ts,self._order) | |
second_target = None | |
if len(self._first_scores) == self._smooth:#平滑化 | |
second_target = self._smoothing(self._first_scores) | |
if second_target and len(self._smoothed_scores) == self._order:#第二段学習 | |
score,predict2 = self._sdar_second.update(second_target,self._smoothed_scores) | |
self._add_one(score, | |
self._second_scores,self._smooth2) | |
if second_target: | |
self._add_one(second_target,self._smoothed_scores, self._order) | |
if len(self._second_scores) == self._smooth2: | |
return self._smoothing(self._second_scores),predict | |
else: | |
return 0.0,predict |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment