Created
November 25, 2025 02:16
-
-
Save shunting314/7b6ad5da5dd4537df35e5439874a460a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import triton | |
| import triton.language as tl | |
| from torch._inductor.runtime import triton_helpers, triton_heuristics | |
| from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math | |
| from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, DeviceProperties | |
| from torch._dynamo.testing import rand_strided | |
| from torch._C import _cuda_getCurrentRawStream as get_raw_stream | |
| import torch | |
| @triton_heuristics.pointwise( | |
| size_hints={'x': 67108864}, tile_hint=TileHint.DEFAULT, | |
| filename=__file__, | |
| triton_meta={'signature': {'in_ptr0': '*bf16', 'in_ptr1': '*i64', 'in_ptr2': '*bf16', 'out_ptr0': '*bf16', 'xnumel_0': 'i32', 'XBLOCK': 'constexpr'}, 'device': DeviceProperties(type='cuda', index=0, multi_processor_count=148, cc=100, major=10, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, warp_size=32), 'constants': {}, 'configs': [{(0,): [['tt.divisibility', 16]], (1,): [['tt.divisibility', 16]], (2,): [['tt.divisibility', 16]], (3,): [['tt.divisibility', 16]], (4,): [['tt.divisibility', 16]]}]}, | |
| inductor_meta={'grid_type': 'SequentialComboKernelGrid', 'combo_grid_meta': {'num_kernels': 1, 'min_blocks': None, 'default_config': None, 'no_x_dim_0': False, 'xnumel_0': None}, 'kernel_name': 'triton_poi_fused_1_3', 'mutated_arg_names': [], 'backend_hash': '0BE79B16E554042AA7B1EB4102B8EA61128454EAFD0C7CABEEF1703B1EAEF73E', 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False, 'deterministic': False, 'force_filter_reduction_configs': False, 'are_deterministic_algorithms_enabled': False} | |
| ) | |
| @triton.jit | |
| def triton_poi_fused_1_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel_0, XBLOCK : tl.constexpr): | |
| pid = tl.program_id(0) | |
| num_xblocks_0 = tl.cdiv(xnumel_0, XBLOCK) | |
| if pid < num_xblocks_0: | |
| pid_offset = pid | |
| r0_numel = 1 | |
| xoffset = pid_offset * XBLOCK | |
| xindex = xoffset + tl.arange(0, XBLOCK)[:] | |
| xmask = xindex < xnumel_0 | |
| x0 = (xindex % 128) | |
| x1 = ((xindex // 128) % 32) | |
| x2 = xindex // 4096 | |
| x4 = xindex | |
| tmp0 = x0 | |
| tmp1 = tl.full([1], 0, tl.int64) | |
| tmp2 = tmp0 >= tmp1 | |
| tmp3 = tl.full([1], 64, tl.int64) | |
| tmp4 = tmp0 < tmp3 | |
| tmp5 = tl.load(in_ptr0 + (128*x1 + 6144*x2 + (x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0).to(tl.float32) | |
| tmp6 = tl.load(in_ptr1 + (x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) | |
| tmp7 = tl.full([XBLOCK], 8192, tl.int32) | |
| tmp8 = tmp6 + tmp7 | |
| tmp9 = tmp6 < 0 | |
| tmp10 = tl.where(tmp9, tmp8, tmp6) | |
| tl.device_assert(((0 <= tl.broadcast_to(tmp10, [XBLOCK])) & (tl.broadcast_to(tmp10, [XBLOCK]) < 8192)) | ~(tmp4 & xmask), "index out of bounds: 0 <= tl.broadcast_to(tmp10, [XBLOCK]) < 8192") | |
| tmp12 = tl.load(in_ptr2 + (128*tmp10 + (x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0).to(tl.float32) | |
| tmp13 = tmp5 * tmp12 | |
| tmp14 = tl.load(in_ptr0 + (64 + 128*x1 + 6144*x2 + (x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0).to(tl.float32) | |
| tmp15 = tl.load(in_ptr2 + (64 + 128*tmp10 + (x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0).to(tl.float32) | |
| tmp16 = tmp14 * tmp15 | |
| tmp17 = tmp13 - tmp16 | |
| tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) | |
| tmp19 = tl.where(tmp4, tmp17, tmp18) | |
| tmp20 = tmp0 >= tmp3 | |
| tmp21 = tl.full([1], 128, tl.int64) | |
| tmp22 = tmp0 < tmp21 | |
| tmp23 = tl.load(in_ptr0 + (64 + 128*x1 + 6144*x2 + ((-64) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0).to(tl.float32) | |
| tmp24 = tl.load(in_ptr1 + (x2), tmp20 & xmask, eviction_policy='evict_last', other=0.0) | |
| tmp25 = tl.full([XBLOCK], 8192, tl.int32) | |
| tmp26 = tmp24 + tmp25 | |
| tmp27 = tmp24 < 0 | |
| tmp28 = tl.where(tmp27, tmp26, tmp24) | |
| tl.device_assert(((0 <= tl.broadcast_to(tmp28, [XBLOCK])) & (tl.broadcast_to(tmp28, [XBLOCK]) < 8192)) | ~(tmp20 & xmask), "index out of bounds: 0 <= tl.broadcast_to(tmp28, [XBLOCK]) < 8192") | |
| tmp30 = tl.load(in_ptr2 + (128*tmp28 + ((-64) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0).to(tl.float32) | |
| tmp31 = tmp23 * tmp30 | |
| tmp32 = tl.load(in_ptr0 + (128*x1 + 6144*x2 + ((-64) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0).to(tl.float32) | |
| tmp33 = tl.load(in_ptr2 + (64 + 128*tmp28 + ((-64) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0).to(tl.float32) | |
| tmp34 = tmp32 * tmp33 | |
| tmp35 = tmp31 + tmp34 | |
| tmp36 = tl.full(tmp35.shape, 0.0, tmp35.dtype) | |
| tmp37 = tl.where(tmp20, tmp35, tmp36) | |
| tmp38 = tl.where(tmp4, tmp19, tmp37) | |
| tl.store(out_ptr0 + (x4), tmp38, xmask) | |
| else: | |
| pass | |
| def get_args(): | |
| arg_0 = rand_strided((16384, 6144), (6144, 1), device='cuda:0', dtype=torch.bfloat16) | |
| arg_1 = rand_strided((16384,), (1,), device='cuda:0', dtype=torch.int64) | |
| arg_2 = rand_strided((8192, 128), (128, 1), device='cuda:0', dtype=torch.bfloat16) | |
| arg_3 = rand_strided((16384, 32, 128), (4096, 128, 1), device='cuda:0', dtype=torch.bfloat16) | |
| return arg_0, arg_1, arg_2, arg_3, 67108864, | |
| def call(args): | |
| with torch.cuda._DeviceGuard(0): | |
| torch.cuda.set_device(0) | |
| stream0 = get_raw_stream(0) | |
| triton_poi_fused_1_3.run(*args, stream=stream0) | |
| def benchmark_all_configs(args): | |
| with torch.cuda._DeviceGuard(0): | |
| torch.cuda.set_device(0) | |
| return triton_poi_fused_1_3.benchmark_all_configs(*args) | |
| if __name__ == '__main__': | |
| from torch._inductor.runtime.benchmarking import benchmarker | |
| args = get_args() | |
| ms = benchmarker.benchmark(call, fn_args=(args,), device=cuda,rep=40) | |
| num_gb = 0 | |
| gb_per_s = num_gb / (ms / 1e3) | |
| print(f"{ms:.3f}ms {num_gb:.3f}GB {gb_per_s:.2f}GB/s") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment