Last active
June 3, 2019 12:16
-
-
Save shuozhang1985/691fa6e73ab583e5a2890110f138dc0b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#### linear regression | |
import numpy as np | |
import pandas as pd | |
import os | |
os.chdir("/Users/shuozhang/Desktop/data") | |
nycmodel=pd.read_csv('nycmodeldata.csv', sep='\t', index_col=False, dtype={'zipcode':'S10'}) | |
import statsmodels.api as sm | |
add_dummies = pd.get_dummies(nycmodel['zipcode']) | |
add_dummies=add_dummies.applymap(np.int) | |
nycmodel = pd.concat([nycmodel, add_dummies], axis=1) | |
nycmodel.drop(['zipcode','Unnamed: 0'], inplace=True, axis=1) | |
target=nycmodel[['count']] | |
data=nycmodel[[col for col in nycmodel.columns if col not in ['count']]] | |
import sklearn.cross_validation as cv | |
x_train, x_test, y_train, y_test = cv.train_test_split(data, target, test_size=2.0/10, random_state=0) | |
from scipy import stats | |
from sklearn import linear_model | |
ols = linear_model.LinearRegression() | |
ols.fit(x_train, y_train) | |
'training R^2: %.2f',ols.score(x_train, y_train) | |
'testing R^2: %.2f',ols.score(x_test, y_test) | |
from sklearn.metrics import mean_squared_error | |
'training RMSE:', mean_squared_error(y_train, ols.predict(x_train)) | |
'testing RMSE:', mean_squared_error(y_test, ols.predict(x_test)) | |
#### ridge regression | |
from __future__ import print_function | |
from __future__ import division | |
from sklearn.cross_validation import cross_val_score | |
from sklearn import linear_model | |
from bayes_opt import BayesianOptimization | |
from sklearn import metrics | |
import math | |
data=x_train | |
target=y_train | |
#### Bayesian Optimization | |
def Ridgecv(alpha): | |
return cross_val_score(linear_model.Ridge(alpha=float(alpha), random_state=2), | |
data, target, 'mean_squared_error', cv=5).mean() | |
if __name__ == "__main__": | |
RidgeBO = BayesianOptimization(Ridgecv, {'alpha': (0, 8)}) | |
RidgeBO.maximize(init_points=2, n_iter = 10) | |
print('Final Results') | |
print('Ridge: %f' % RidgeBO.res['max']['max_val']) | |
ridge = linear_model.Ridge(alpha=0.3985) | |
ridge.fit(x_train, y_train) | |
ridge.score(x_train, y_train) | |
ridge.score(x_test, y_test) | |
mean_squared_error(y_train, ridge.predict(x_train)) | |
mean_squared_error(y_test, ridge.predict(x_test)) | |
#### randomforest | |
RFR=RandomForestRegressor(max_features=14,n_estimators=300) | |
RFR.fit(x_train, y_train) | |
from sklearn.metrics import mean_squared_error | |
mean_squared_error(y_train, RFR.predict(x_train)) | |
mean_squared_error(y_test, RFR.predict(x_test)) | |
RFR1=RandomForestRegressor(max_features=14,n_estimators=500) | |
RFR1.fit(x_train, y_train) | |
from sklearn.metrics import mean_squared_error | |
mean_squared_error(y_train, RFR1.predict(x_train)) | |
mean_squared_error(y_test, RFR1.predict(x_test)) | |
#### xgboost | |
#### Bayesian Optimization | |
from __future__ import print_function | |
from __future__ import division | |
import xgboost as xgb | |
from sklearn.cross_validation import cross_val_score | |
from bayes_opt import bayesian_optimization | |
def xgboostcv(max_depth, | |
learning_rate, | |
n_estimators, | |
gamma, | |
min_child_weight, | |
subsample, | |
colsample_bytree, | |
silent=True, | |
nthread=-1): | |
return cross_val_score(xgb.XGBRegressor(max_depth=int(max_depth), | |
learning_rate=learning_rate, | |
n_estimators=int(n_estimators), | |
silent=silent, | |
nthread=nthread, | |
gamma=gamma, | |
min_child_weight=min_child_weight, | |
subsample=subsample, | |
colsample_bytree=colsample_bytree), | |
x_train, | |
y_train, | |
"mean_squared_error", | |
cv=5).mean() | |
if __name__ == "__main__": | |
xgboostBO = BayesianOptimization(xgboostcv, | |
{'max_depth': (3, 14), | |
'learning_rate': (0.01, 0.2), | |
'n_estimators': (50, 1000), | |
'gamma': (1., 0.01), | |
'min_child_weight': (1, 10), | |
'subsample': (0.5, 1), | |
'colsample_bytree' :(0.5, 1)}) | |
xgboostBO.maximize(init_points=2, n_iter = 28) | |
print('-'*53) | |
print('Final Results') | |
print('XGBOOST: %f' % xgboostBO.res['max']['max_val']) | |
XGB=xgb.XGBRegressor(max_depth=14,learning_rate=0.1186,n_estimators=463,silent=True, | |
nthread=-1,gamma=1.0,min_child_weight=6.1929,subsample=0.9675,colsample_bytree=0.8544) | |
XGB.fit(x_train, y_train) | |
XGB.fit(x_test, y_test) | |
from sklearn.metrics import mean_squared_error | |
mean_squared_error(y_train, XGB.predict(x_train)) | |
mean_squared_error(y_test, XGB.predict(x_test)) | |
#### feature importance | |
feature_imprtance = zip(x_trainsub.columns, RFR.feature_importances_) | |
dtype = [('feature', 'S10'), ('importance', 'float')] | |
feature_imprtance = np.array(feature_imprtance, dtype = dtype) | |
feature_sort = np.sort(feature_imprtance, order='importance')[::-1] | |
df=pd.DataFrame(feature_sort) | |
import pylab as plt | |
import numpy as np | |
x = np.arange(1, 21) | |
y= df['importance'] | |
LABELS = df['feature'] | |
plt.figure() | |
plt.bar(x, y, align='center') | |
plt.xticks(x, LABELS) | |
plt.xlabel('Feature') | |
plt.ylabel('RFR Importance') | |
plt.title('RFR importance analysis of top 20 features') | |
plt.show() | |
#### ensemble: using linear regression combine two models: randomforest and xgboost | |
pred_y_test_rf=RFR.predict(x_test) | |
pred_y_test_rf=pd.DataFrame(pred_y_test, columns=['pred_y_testrf']) | |
pred_y_train_rf=RFR.predict(x_train) | |
pred_y_train_rf=pd.DataFrame(pred_y_train, columns=['pred_y_trainrf']) | |
pred_y_test_xgb=XGB.predict(x_test) | |
pred_y_test_xgb=pd.DataFrame(pred_y_test, columns=['pred_y_testxgb']) | |
pred_y_train_xgb=XGB.predict(x_train) | |
pred_y_train_xgb=pd.DataFrame(pred_y_train, columns=['pred_y_trainxgb']) | |
pred_y_train_com=pd.concat([pred_y_trainrf,pred_y_trainxgb], axis=1) | |
from sklearn import linear_model | |
ols = linear_model.LinearRegression(fit_intercept=False) | |
ols.fit(pred_y_train_com, y_train) | |
ols.score(pred_y_train_com, y_train) | |
from sklearn.metrics import mean_squared_error | |
import math | |
math.sqrt(mean_squared_error(y_train, pred_y_train_com)) | |
pred_y_test_com=pd.concat([pred_y_testrf,pred_y_testxgb], axis=1) | |
pred_y_ensemble=ols.fit(pred_y_test_com) | |
math.sqrt(mean_squared_error(y_test, pred_y_ensemble)) | |
pred_y_final=pd.concat([y_test, pred_y_testrf,pred_y_testxgb, pred_y_ensemble], axis=1) | |
pred_y_final1=pred_y_final1.applymap(np.int) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Teacher, can you share this final forecasted dataset, because reading this article has inspired and inspired me, but because in China, because the firewall can't download, the teacher can share the last synthesized data. Set? My email: [email protected]