Skip to content

Instantly share code, notes, and snippets.

@siahuat0727
Created April 22, 2020 02:17
Show Gist options
  • Save siahuat0727/19e7e1d31d7de1c92f8a1d33ab5cd49e to your computer and use it in GitHub Desktop.
Save siahuat0727/19e7e1d31d7de1c92f8a1d33ab5cd49e to your computer and use it in GitHub Desktop.
traffic light recognition (horizontal)
name: "traffic light recognition (horizontal)"
layer{
name:"input"
type: "Input"
top: "data_org"
input_param{
shape{
dim:1
dim:32
dim:96
dim:3
}
}
}
layer {
type: "Permute"
name: "permute"
bottom: "data_org"
top: "data"
permute_param{
order: 0
order: 3
order: 1
order: 2
}
}
#layer {
# name: "distort"
# type: "ImageDistort"
# bottom: "data_org"
# top: "data"
# image_distort_param {
# new_scale: 0.01
# new_mean_value: 69.06
# new_mean_value: 66.58
# new_mean_value: 66.56
# }
#}
layer{
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param{
lr_mult: 1.000000
decay_mult: 1.000000
}
param {
lr_mult: 2.000000
decay_mult: 0.000000
}
convolution_param {
num_output: 32
kernel_size: 3
pad: 1
stride: 1
dilation: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.000000
}
}
}
layer{
type: "BatchNorm"
name: "conv1_bn"
bottom: "conv1"
top: "conv1"
batch_norm_param{
use_global_stats: true
}
}
layer {
type: "Scale"
name: "conv1_bn_scale"
bottom: "conv1"
top: "conv1"
scale_param {
axis: 1
num_axes: 1
bias_term: false
}
}
layer{
type: "ReLU"
name: "conv1_relu"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_w: 3
kernel_h: 3
stride_w: 2
stride_h: 2
pad_w: 1
pad_h: 1
round_mode: 1
}
}
layer{
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param{
lr_mult: 1.000000
decay_mult: 1.000000
}
param {
lr_mult: 2.000000
decay_mult: 0.000000
}
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 1
dilation: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.000000
}
}
}
layer{
type: "BatchNorm"
name: "conv2_bn"
bottom: "conv2"
top: "conv2"
batch_norm_param{
use_global_stats: true
}
}
layer {
type: "Scale"
name: "conv2_bn_scale"
bottom: "conv2"
top: "conv2"
scale_param {
axis: 1
num_axes: 1
bias_term: false
}
}
layer{
type: "ReLU"
name: "conv2_relu"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_w: 3
kernel_h: 3
stride_w: 2
stride_h: 2
pad_w: 1
pad_h: 1
round_mode: 1
}
}
layer{
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param{
lr_mult: 1.000000
decay_mult: 1.000000
}
param {
lr_mult: 2.000000
decay_mult: 0.000000
}
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
dilation: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.000000
}
}
}
layer{
type: "BatchNorm"
name: "conv3_bn"
bottom: "conv3"
top: "conv3"
batch_norm_param{
use_global_stats: true
}
}
layer {
type: "Scale"
name: "conv3_bn_scale"
bottom: "conv3"
top: "conv3"
scale_param {
axis: 1
num_axes: 1
bias_term: false
}
}
layer{
type: "ReLU"
name: "conv3_relu"
bottom: "conv3"
top: "conv3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3"
top: "pool3"
pooling_param {
pool: MAX
kernel_w: 3
kernel_h: 3
stride_w: 2
stride_h: 2
pad_w: 1
pad_h: 1
round_mode: 1
}
}
layer{
name: "conv4"
type: "Convolution"
bottom: "pool3"
top: "conv4"
param{
lr_mult: 1.000000
decay_mult: 1.000000
}
param {
lr_mult: 2.000000
decay_mult: 0.000000
}
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
dilation: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.000000
}
}
}
layer{
type: "BatchNorm"
name: "conv4_bn"
bottom: "conv4"
top: "conv4"
batch_norm_param{
use_global_stats: true
}
}
layer {
type: "Scale"
name: "conv4_bn_scale"
bottom: "conv4"
top: "conv4"
scale_param {
axis: 1
num_axes: 1
bias_term: false
}
}
layer{
type: "ReLU"
name: "conv4_relu"
bottom: "conv4"
top: "conv4"
}
layer {
name: "pool4"
type: "Pooling"
bottom: "conv4"
top: "pool4"
pooling_param {
pool: MAX
kernel_w: 3
kernel_h: 3
stride_w: 2
stride_h: 2
pad_w: 1
pad_h: 1
round_mode: 1
}
}
layer{
name: "conv5"
type: "Convolution"
bottom: "pool4"
top: "conv5"
param{
lr_mult: 1.000000
decay_mult: 1.000000
}
param {
lr_mult: 2.000000
decay_mult: 0.000000
}
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
dilation: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.000000
}
}
}
layer{
type: "BatchNorm"
name: "conv5_bn"
bottom: "conv5"
top: "conv5"
batch_norm_param{
use_global_stats: true
}
}
layer {
type: "Scale"
name: "conv5_bn_scale"
bottom: "conv5"
top: "conv5"
scale_param {
axis: 1
num_axes: 1
bias_term: false
}
}
layer{
type: "ReLU"
name: "conv5_relu"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: AVE
kernel_w: 6
kernel_h: 2
stride_w: 6
stride_h: 2
round_mode: 1
}
}
layer {
name: "ft"
type: "InnerProduct"
bottom: "pool5"
top: "ft"
param {
lr_mult: 1.000000
decay_mult: 1.000000
}
param {
lr_mult: 2.000000
decay_mult: 0.000000
}
inner_product_param {
num_output: 128
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.000000
}
}
}
layer{
type: "BatchNorm"
name: "ft_bn"
bottom: "ft"
top: "ft"
batch_norm_param{
use_global_stats: true
}
}
layer {
type: "Scale"
name: "ft_bn_scale"
bottom: "ft"
top: "ft"
scale_param {
axis: 1
num_axes: 1
bias_term: false
}
}
layer{
type: "ReLU"
name: "ft_relu"
bottom: "ft"
top: "ft"
}
layer {
name: "logits"
type: "InnerProduct"
bottom: "ft"
top: "logits"
param {
lr_mult: 1.000000
decay_mult: 1.000000
}
param {
lr_mult: 2.000000
decay_mult: 0.000000
}
inner_product_param {
num_output: 4
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.000000
}
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "logits"
top: "prob"
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment