Created
April 22, 2020 02:17
-
-
Save siahuat0727/19e7e1d31d7de1c92f8a1d33ab5cd49e to your computer and use it in GitHub Desktop.
traffic light recognition (horizontal)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "traffic light recognition (horizontal)" | |
layer{ | |
name:"input" | |
type: "Input" | |
top: "data_org" | |
input_param{ | |
shape{ | |
dim:1 | |
dim:32 | |
dim:96 | |
dim:3 | |
} | |
} | |
} | |
layer { | |
type: "Permute" | |
name: "permute" | |
bottom: "data_org" | |
top: "data" | |
permute_param{ | |
order: 0 | |
order: 3 | |
order: 1 | |
order: 2 | |
} | |
} | |
#layer { | |
# name: "distort" | |
# type: "ImageDistort" | |
# bottom: "data_org" | |
# top: "data" | |
# image_distort_param { | |
# new_scale: 0.01 | |
# new_mean_value: 69.06 | |
# new_mean_value: 66.58 | |
# new_mean_value: 66.56 | |
# } | |
#} | |
layer{ | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1" | |
param{ | |
lr_mult: 1.000000 | |
decay_mult: 1.000000 | |
} | |
param { | |
lr_mult: 2.000000 | |
decay_mult: 0.000000 | |
} | |
convolution_param { | |
num_output: 32 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
dilation: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.000000 | |
} | |
} | |
} | |
layer{ | |
type: "BatchNorm" | |
name: "conv1_bn" | |
bottom: "conv1" | |
top: "conv1" | |
batch_norm_param{ | |
use_global_stats: true | |
} | |
} | |
layer { | |
type: "Scale" | |
name: "conv1_bn_scale" | |
bottom: "conv1" | |
top: "conv1" | |
scale_param { | |
axis: 1 | |
num_axes: 1 | |
bias_term: false | |
} | |
} | |
layer{ | |
type: "ReLU" | |
name: "conv1_relu" | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_w: 3 | |
kernel_h: 3 | |
stride_w: 2 | |
stride_h: 2 | |
pad_w: 1 | |
pad_h: 1 | |
round_mode: 1 | |
} | |
} | |
layer{ | |
name: "conv2" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2" | |
param{ | |
lr_mult: 1.000000 | |
decay_mult: 1.000000 | |
} | |
param { | |
lr_mult: 2.000000 | |
decay_mult: 0.000000 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
dilation: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.000000 | |
} | |
} | |
} | |
layer{ | |
type: "BatchNorm" | |
name: "conv2_bn" | |
bottom: "conv2" | |
top: "conv2" | |
batch_norm_param{ | |
use_global_stats: true | |
} | |
} | |
layer { | |
type: "Scale" | |
name: "conv2_bn_scale" | |
bottom: "conv2" | |
top: "conv2" | |
scale_param { | |
axis: 1 | |
num_axes: 1 | |
bias_term: false | |
} | |
} | |
layer{ | |
type: "ReLU" | |
name: "conv2_relu" | |
bottom: "conv2" | |
top: "conv2" | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_w: 3 | |
kernel_h: 3 | |
stride_w: 2 | |
stride_h: 2 | |
pad_w: 1 | |
pad_h: 1 | |
round_mode: 1 | |
} | |
} | |
layer{ | |
name: "conv3" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3" | |
param{ | |
lr_mult: 1.000000 | |
decay_mult: 1.000000 | |
} | |
param { | |
lr_mult: 2.000000 | |
decay_mult: 0.000000 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
dilation: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.000000 | |
} | |
} | |
} | |
layer{ | |
type: "BatchNorm" | |
name: "conv3_bn" | |
bottom: "conv3" | |
top: "conv3" | |
batch_norm_param{ | |
use_global_stats: true | |
} | |
} | |
layer { | |
type: "Scale" | |
name: "conv3_bn_scale" | |
bottom: "conv3" | |
top: "conv3" | |
scale_param { | |
axis: 1 | |
num_axes: 1 | |
bias_term: false | |
} | |
} | |
layer{ | |
type: "ReLU" | |
name: "conv3_relu" | |
bottom: "conv3" | |
top: "conv3" | |
} | |
layer { | |
name: "pool3" | |
type: "Pooling" | |
bottom: "conv3" | |
top: "pool3" | |
pooling_param { | |
pool: MAX | |
kernel_w: 3 | |
kernel_h: 3 | |
stride_w: 2 | |
stride_h: 2 | |
pad_w: 1 | |
pad_h: 1 | |
round_mode: 1 | |
} | |
} | |
layer{ | |
name: "conv4" | |
type: "Convolution" | |
bottom: "pool3" | |
top: "conv4" | |
param{ | |
lr_mult: 1.000000 | |
decay_mult: 1.000000 | |
} | |
param { | |
lr_mult: 2.000000 | |
decay_mult: 0.000000 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
dilation: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.000000 | |
} | |
} | |
} | |
layer{ | |
type: "BatchNorm" | |
name: "conv4_bn" | |
bottom: "conv4" | |
top: "conv4" | |
batch_norm_param{ | |
use_global_stats: true | |
} | |
} | |
layer { | |
type: "Scale" | |
name: "conv4_bn_scale" | |
bottom: "conv4" | |
top: "conv4" | |
scale_param { | |
axis: 1 | |
num_axes: 1 | |
bias_term: false | |
} | |
} | |
layer{ | |
type: "ReLU" | |
name: "conv4_relu" | |
bottom: "conv4" | |
top: "conv4" | |
} | |
layer { | |
name: "pool4" | |
type: "Pooling" | |
bottom: "conv4" | |
top: "pool4" | |
pooling_param { | |
pool: MAX | |
kernel_w: 3 | |
kernel_h: 3 | |
stride_w: 2 | |
stride_h: 2 | |
pad_w: 1 | |
pad_h: 1 | |
round_mode: 1 | |
} | |
} | |
layer{ | |
name: "conv5" | |
type: "Convolution" | |
bottom: "pool4" | |
top: "conv5" | |
param{ | |
lr_mult: 1.000000 | |
decay_mult: 1.000000 | |
} | |
param { | |
lr_mult: 2.000000 | |
decay_mult: 0.000000 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
dilation: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.000000 | |
} | |
} | |
} | |
layer{ | |
type: "BatchNorm" | |
name: "conv5_bn" | |
bottom: "conv5" | |
top: "conv5" | |
batch_norm_param{ | |
use_global_stats: true | |
} | |
} | |
layer { | |
type: "Scale" | |
name: "conv5_bn_scale" | |
bottom: "conv5" | |
top: "conv5" | |
scale_param { | |
axis: 1 | |
num_axes: 1 | |
bias_term: false | |
} | |
} | |
layer{ | |
type: "ReLU" | |
name: "conv5_relu" | |
bottom: "conv5" | |
top: "conv5" | |
} | |
layer { | |
name: "pool5" | |
type: "Pooling" | |
bottom: "conv5" | |
top: "pool5" | |
pooling_param { | |
pool: AVE | |
kernel_w: 6 | |
kernel_h: 2 | |
stride_w: 6 | |
stride_h: 2 | |
round_mode: 1 | |
} | |
} | |
layer { | |
name: "ft" | |
type: "InnerProduct" | |
bottom: "pool5" | |
top: "ft" | |
param { | |
lr_mult: 1.000000 | |
decay_mult: 1.000000 | |
} | |
param { | |
lr_mult: 2.000000 | |
decay_mult: 0.000000 | |
} | |
inner_product_param { | |
num_output: 128 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.000000 | |
} | |
} | |
} | |
layer{ | |
type: "BatchNorm" | |
name: "ft_bn" | |
bottom: "ft" | |
top: "ft" | |
batch_norm_param{ | |
use_global_stats: true | |
} | |
} | |
layer { | |
type: "Scale" | |
name: "ft_bn_scale" | |
bottom: "ft" | |
top: "ft" | |
scale_param { | |
axis: 1 | |
num_axes: 1 | |
bias_term: false | |
} | |
} | |
layer{ | |
type: "ReLU" | |
name: "ft_relu" | |
bottom: "ft" | |
top: "ft" | |
} | |
layer { | |
name: "logits" | |
type: "InnerProduct" | |
bottom: "ft" | |
top: "logits" | |
param { | |
lr_mult: 1.000000 | |
decay_mult: 1.000000 | |
} | |
param { | |
lr_mult: 2.000000 | |
decay_mult: 0.000000 | |
} | |
inner_product_param { | |
num_output: 4 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.000000 | |
} | |
} | |
} | |
layer { | |
name: "prob" | |
type: "Softmax" | |
bottom: "logits" | |
top: "prob" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment