Skip to content

Instantly share code, notes, and snippets.

@siahuat0727
Created April 22, 2020 02:05
Show Gist options
  • Save siahuat0727/617ce3a0b3ffc8be6885bc7d2f9f40b1 to your computer and use it in GitHub Desktop.
Save siahuat0727/617ce3a0b3ffc8be6885bc7d2f9f40b1 to your computer and use it in GitHub Desktop.
darkscnn lane detection
name: "darknet-16c-16x-3d multitask TEST 960x384, offset L3:440, L4: 312, RM DET"
# SCNN part: kernel size 5, only Up-Down direction
###################### LANE #######################3
layer {
name: "input"
type: "Input"
top: "data"
input_param {
shape {
dim: 1
dim: 3
dim: 480
dim: 640
}
}
}
layer{
name: "scale_data_lane"
type: "Power"
bottom: "data"
top: "scale_data_lane"
power_param {
power: 1
scale: 0.00392157
shift: 0
}
propagate_down: false
}
##########################################################
layer {
name: "conv1"
type: "Convolution"
bottom: "scale_data_lane"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 16
bias_term: false
pad: 1
kernel_size: 3
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv1_bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv1_scale"
type: "Scale"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv1_relu"
type: "ReLU"
bottom: "conv1"
top: "conv1"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
pad: 0
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv2_bn"
type: "BatchNorm"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv2_scale"
type: "Scale"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv2_relu"
type: "ReLU"
bottom: "conv2"
top: "conv2"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
pad: 0
stride: 2
}
}
layer {
name: "conv3_1"
type: "Convolution"
bottom: "pool2"
top: "conv3_1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv3_1_bn"
type: "BatchNorm"
bottom: "conv3_1"
top: "conv3_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv3_1_scale"
type: "Scale"
bottom: "conv3_1"
top: "conv3_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv3_1_relu"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
bias_term: false
pad: 0
kernel_size: 1
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv3_2_bn"
type: "BatchNorm"
bottom: "conv3_2"
top: "conv3_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv3_2_scale"
type: "Scale"
bottom: "conv3_2"
top: "conv3_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv3_2_relu"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "conv3_3"
type: "Convolution"
bottom: "conv3_2"
top: "conv3_3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv3_3_bn"
type: "BatchNorm"
bottom: "conv3_3"
top: "conv3_3"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv3_3_scale"
type: "Scale"
bottom: "conv3_3"
top: "conv3_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv3_3_relu"
type: "ReLU"
bottom: "conv3_3"
top: "conv3_3"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3_3"
top: "pool3"
pooling_param {
pool: MAX
kernel_size: 2
pad: 0
stride: 2
}
}
layer {
name: "conv4_1"
type: "Convolution"
bottom: "pool3"
top: "conv4_1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv4_1_bn"
type: "BatchNorm"
bottom: "conv4_1"
top: "conv4_1"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv4_1_scale"
type: "Scale"
bottom: "conv4_1"
top: "conv4_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv4_1_relu"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
pad: 0
kernel_size: 1
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv4_2_bn"
type: "BatchNorm"
bottom: "conv4_2"
top: "conv4_2"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv4_2_scale"
type: "Scale"
bottom: "conv4_2"
top: "conv4_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv4_2_relu"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "conv4_3"
type: "Convolution"
bottom: "conv4_2"
top: "conv4_3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv4_3_bn"
type: "BatchNorm"
bottom: "conv4_3"
top: "conv4_3"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv4_3_scale"
type: "Scale"
bottom: "conv4_3"
top: "conv4_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv4_3_relu"
type: "ReLU"
bottom: "conv4_3"
top: "conv4_3"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "pool4"
type: "Pooling"
bottom: "conv4_3"
top: "pool4"
pooling_param {
pool: MAX
kernel_size: 2
pad: 0
stride: 2
}
}
layer {
name: "conv5_1"
type: "Convolution"
bottom: "pool4"
top: "conv5_1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv5_1_bn"
type: "BatchNorm"
bottom: "conv5_1"
top: "conv5_1"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv5_1_scale"
type: "Scale"
bottom: "conv5_1"
top: "conv5_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv5_1_relu"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "conv5_2"
type: "Convolution"
bottom: "conv5_1"
top: "conv5_2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 0
kernel_size: 1
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv5_2_bn"
type: "BatchNorm"
bottom: "conv5_2"
top: "conv5_2"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv5_2_scale"
type: "Scale"
bottom: "conv5_2"
top: "conv5_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv5_2_relu"
type: "ReLU"
bottom: "conv5_2"
top: "conv5_2"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "conv5_3"
type: "Convolution"
bottom: "conv5_2"
top: "conv5_3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv5_3_bn"
type: "BatchNorm"
bottom: "conv5_3"
top: "conv5_3"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv5_3_scale"
type: "Scale"
bottom: "conv5_3"
top: "conv5_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv5_3_relu"
type: "ReLU"
bottom: "conv5_3"
top: "conv5_3"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "conv5_4"
type: "Convolution"
bottom: "conv5_3"
top: "conv5_4"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 0
kernel_size: 1
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv5_4_bn"
type: "BatchNorm"
bottom: "conv5_4"
top: "conv5_4"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv5_4_scale"
type: "Scale"
bottom: "conv5_4"
top: "conv5_4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv5_4_relu"
type: "ReLU"
bottom: "conv5_4"
top: "conv5_4"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "conv5_5"
type: "Convolution"
bottom: "conv5_4"
top: "conv5_5"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv5_5_bn"
type: "BatchNorm"
bottom: "conv5_5"
top: "conv5_5"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv5_5_scale"
type: "Scale"
bottom: "conv5_5"
top: "conv5_5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv5_5_relu"
type: "ReLU"
bottom: "conv5_5"
top: "conv5_5"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5_5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
pad: 1
stride: 1
}
}
layer {
name: "conv6_1"
type: "Convolution"
bottom: "pool5"
top: "conv6_1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 2
kernel_size: 3
dilation: 2
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv6_1_bn"
type: "BatchNorm"
bottom: "conv6_1"
top: "conv6_1"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv6_1_scale"
type: "Scale"
bottom: "conv6_1"
top: "conv6_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv6_1_relu"
type: "ReLU"
bottom: "conv6_1"
top: "conv6_1"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "conv6_2"
type: "Convolution"
bottom: "conv6_1"
top: "conv6_2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 0
kernel_size: 1
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv6_2_bn"
type: "BatchNorm"
bottom: "conv6_2"
top: "conv6_2"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv6_2_scale"
type: "Scale"
bottom: "conv6_2"
top: "conv6_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv6_2_relu"
type: "ReLU"
bottom: "conv6_2"
top: "conv6_2"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "conv6_3"
type: "Convolution"
bottom: "conv6_2"
top: "conv6_3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv6_3_bn"
type: "BatchNorm"
bottom: "conv6_3"
top: "conv6_3"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv6_3_scale"
type: "Scale"
bottom: "conv6_3"
top: "conv6_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv6_3_relu"
type: "ReLU"
bottom: "conv6_3"
top: "conv6_3"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "conv6_4"
type: "Convolution"
bottom: "conv6_3"
top: "conv6_4"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 0
kernel_size: 1
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv6_4_bn"
type: "BatchNorm"
bottom: "conv6_4"
top: "conv6_4"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv6_4_scale"
type: "Scale"
bottom: "conv6_4"
top: "conv6_4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv6_4_relu"
type: "ReLU"
bottom: "conv6_4"
top: "conv6_4"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "conv6_5"
type: "Convolution"
bottom: "conv6_4"
top: "conv6_5"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv6_5_bn"
type: "BatchNorm"
bottom: "conv6_5"
top: "conv6_5"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv6_5_scale"
type: "Scale"
bottom: "conv6_5"
top: "conv6_5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv6_5_relu"
type: "ReLU"
bottom: "conv6_5"
top: "conv6_5"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "conv7_1"
type: "Convolution"
bottom: "conv6_5"
top: "conv7_1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv7_1_bn"
type: "BatchNorm"
bottom: "conv7_1"
top: "conv7_1"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv7_1_scale"
type: "Scale"
bottom: "conv7_1"
top: "conv7_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv7_1_relu"
type: "ReLU"
bottom: "conv7_1"
top: "conv7_1"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "conv7_2"
type: "Convolution"
bottom: "conv7_1"
top: "conv7_2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv7_2_bn"
type: "BatchNorm"
bottom: "conv7_2"
top: "conv7_2"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "conv7_2_scale"
type: "Scale"
bottom: "conv7_2"
top: "conv7_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv7_2_relu"
type: "ReLU"
bottom: "conv7_2"
top: "conv7_2"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "concat8"
type: "Concat"
bottom: "conv5_5"
bottom: "conv7_2"
top: "concat8"
concat_param {
axis: 1
}
}
############## slice blob according to batch size ##############
############## Parsing ###############################
######### upsample 1 ########
layer {
name: "reduce1_lane"
type: "Convolution"
bottom: "concat8"
top: "reduce1_lane"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "reduce1_lane_bn"
type: "BatchNorm"
bottom: "reduce1_lane"
top: "reduce1_lane"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "reduce1_lane_scale"
type: "Scale"
bottom: "reduce1_lane"
top: "reduce1_lane"
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "reduce1_lane_relu"
type: "ReLU"
bottom: "reduce1_lane"
top: "reduce1_lane"
relu_param {
negative_slope: 0
}
}
layer {
name: "deconv1_lane"
type: "Deconvolution"
bottom: "reduce1_lane"
top: "deconv1_lane"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
kernel_size: 2 # {{2 * factor _ factor % 2}} 2 * 2 _ 0
stride: 2 # {{factor}}
num_output: 64 # {{C}}
#group: 48 # {{C}}
pad: 0 # {{ceil((factor _ 1) / 2.)}} 2 _ 1 / 2
weight_filler: {type: "xavier" }
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "deconv1_lane_bn"
type: "BatchNorm"
bottom: "deconv1_lane"
top: "deconv1_lane"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "deconv1_lane_scale"
type: "Scale"
bottom: "deconv1_lane"
top: "deconv1_lane"
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "deconv1_lane_relu"
type: "ReLU"
bottom: "deconv1_lane"
top: "deconv1_lane"
relu_param {
negative_slope: 0
}
}
########## end upsample 1 #####
######### upsample 2 ########
layer {
name: "reorg4"
type: "Convolution"
bottom: "conv4_3"
top: "reorg4"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "reorg4_relu"
type: "ReLU"
bottom: "reorg4"
top: "reorg4"
relu_param {
negative_slope: 0
}
}
layer {
type: "Concat"
name: "concat4"
bottom: "reorg4"
bottom: "deconv1_lane"
top: "concat4"
concat_param {
axis: 1
}
}
layer {
name: "reduce2_lane"
type: "Convolution"
bottom: "concat4"
top: "reduce2_lane"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "reduce2_lane_bn"
type: "BatchNorm"
bottom: "reduce2_lane"
top: "reduce2_lane"
batch_norm_param {
use_global_stats: 1
eps: 1e-06
}
}
layer {
name: "reduce2_lane_scale"
type: "Scale"
bottom: "reduce2_lane"
top: "reduce2_lane"
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "reduce2_lane_relu"
type: "ReLU"
bottom: "reduce2_lane"
top: "reduce2_lane"
relu_param {
negative_slope: 0
}
}
layer {
name: "Slice1"
bottom: "reduce2_lane"
type: "Slice"
top: "slice1_1"
top: "slice1_2"
top: "slice1_3"
top: "slice1_4"
top: "slice1_5"
top: "slice1_6"
top: "slice1_7"
top: "slice1_8"
top: "slice1_9"
top: "slice1_10"
top: "slice1_11"
top: "slice1_12"
top: "slice1_13"
top: "slice1_14"
top: "slice1_15"
top: "slice1_16"
top: "slice1_17"
top: "slice1_18"
top: "slice1_19"
top: "slice1_20"
top: "slice1_21"
top: "slice1_22"
top: "slice1_23"
top: "slice1_24"
top: "slice1_25"
top: "slice1_26"
top: "slice1_27"
top: "slice1_28"
top: "slice1_29"
top: "slice1_30"
top: "slice1_31"
top: "slice1_32"
top: "slice1_33"
top: "slice1_34"
top: "slice1_35"
top: "slice1_36"
top: "slice1_37"
top: "slice1_38"
top: "slice1_39"
top: "slice1_40"
top: "slice1_41"
top: "slice1_42"
top: "slice1_43"
top: "slice1_44"
top: "slice1_45"
top: "slice1_46"
top: "slice1_47"
top: "slice1_48"
top: "slice1_49"
top: "slice1_50"
top: "slice1_51"
top: "slice1_52"
top: "slice1_53"
top: "slice1_54"
top: "slice1_55"
top: "slice1_56"
top: "slice1_57"
top: "slice1_58"
top: "slice1_59"
top: "slice1_60"
slice_param {
axis: 2
slice_point: 1
slice_point: 2
slice_point: 3
slice_point: 4
slice_point: 5
slice_point: 6
slice_point: 7
slice_point: 8
slice_point: 9
slice_point: 10
slice_point: 11
slice_point: 12
slice_point: 13
slice_point: 14
slice_point: 15
slice_point: 16
slice_point: 17
slice_point: 18
slice_point: 19
slice_point: 20
slice_point: 21
slice_point: 22
slice_point: 23
slice_point: 24
slice_point: 25
slice_point: 26
slice_point: 27
slice_point: 28
slice_point: 29
slice_point: 30
slice_point: 31
slice_point: 32
slice_point: 33
slice_point: 34
slice_point: 35
slice_point: 36
slice_point: 37
slice_point: 38
slice_point: 39
slice_point: 40
slice_point: 41
slice_point: 42
slice_point: 43
slice_point: 44
slice_point: 45
slice_point: 46
slice_point: 47
slice_point: 48
slice_point: 49
slice_point: 50
slice_point: 51
slice_point: 52
slice_point: 53
slice_point: 54
slice_point: 55
slice_point: 56
slice_point: 57
slice_point: 58
slice_point: 59
}
}
layer {
name: "SCNN_D_1"
bottom: "slice1_1"
top: "SCNN_D_1/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_1/relu"
bottom: "SCNN_D_1/message"
top: "SCNN_D_1/message"
type: "ReLU"
}
layer {
name: "SCNN_D_1/sum"
bottom: "SCNN_D_1/message"
bottom: "slice1_2"
top: "SCNN_D_2"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_2"
bottom: "SCNN_D_2"
top: "SCNN_D_2/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_2/relu"
bottom: "SCNN_D_2/message"
top: "SCNN_D_2/message"
type: "ReLU"
}
layer {
name: "SCNN_D_2/sum"
bottom: "SCNN_D_2/message"
bottom: "slice1_3"
top: "SCNN_D_3"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_3"
bottom: "SCNN_D_3"
top: "SCNN_D_3/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_3/relu"
bottom: "SCNN_D_3/message"
top: "SCNN_D_3/message"
type: "ReLU"
}
layer {
name: "SCNN_D_3/sum"
bottom: "SCNN_D_3/message"
bottom: "slice1_4"
top: "SCNN_D_4"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_4"
bottom: "SCNN_D_4"
top: "SCNN_D_4/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_4/relu"
bottom: "SCNN_D_4/message"
top: "SCNN_D_4/message"
type: "ReLU"
}
layer {
name: "SCNN_D_4/sum"
bottom: "SCNN_D_4/message"
bottom: "slice1_5"
top: "SCNN_D_5"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_5"
bottom: "SCNN_D_5"
top: "SCNN_D_5/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_5/relu"
bottom: "SCNN_D_5/message"
top: "SCNN_D_5/message"
type: "ReLU"
}
layer {
name: "SCNN_D_5/sum"
bottom: "SCNN_D_5/message"
bottom: "slice1_6"
top: "SCNN_D_6"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_6"
bottom: "SCNN_D_6"
top: "SCNN_D_6/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_6/relu"
bottom: "SCNN_D_6/message"
top: "SCNN_D_6/message"
type: "ReLU"
}
layer {
name: "SCNN_D_6/sum"
bottom: "SCNN_D_6/message"
bottom: "slice1_7"
top: "SCNN_D_7"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_7"
bottom: "SCNN_D_7"
top: "SCNN_D_7/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_7/relu"
bottom: "SCNN_D_7/message"
top: "SCNN_D_7/message"
type: "ReLU"
}
layer {
name: "SCNN_D_7/sum"
bottom: "SCNN_D_7/message"
bottom: "slice1_8"
top: "SCNN_D_8"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_8"
bottom: "SCNN_D_8"
top: "SCNN_D_8/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_8/relu"
bottom: "SCNN_D_8/message"
top: "SCNN_D_8/message"
type: "ReLU"
}
layer {
name: "SCNN_D_8/sum"
bottom: "SCNN_D_8/message"
bottom: "slice1_9"
top: "SCNN_D_9"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_9"
bottom: "SCNN_D_9"
top: "SCNN_D_9/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_9/relu"
bottom: "SCNN_D_9/message"
top: "SCNN_D_9/message"
type: "ReLU"
}
layer {
name: "SCNN_D_9/sum"
bottom: "SCNN_D_9/message"
bottom: "slice1_10"
top: "SCNN_D_10"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_10"
bottom: "SCNN_D_10"
top: "SCNN_D_10/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_10/relu"
bottom: "SCNN_D_10/message"
top: "SCNN_D_10/message"
type: "ReLU"
}
layer {
name: "SCNN_D_10/sum"
bottom: "SCNN_D_10/message"
bottom: "slice1_11"
top: "SCNN_D_11"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_11"
bottom: "SCNN_D_11"
top: "SCNN_D_11/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_11/relu"
bottom: "SCNN_D_11/message"
top: "SCNN_D_11/message"
type: "ReLU"
}
layer {
name: "SCNN_D_11/sum"
bottom: "SCNN_D_11/message"
bottom: "slice1_12"
top: "SCNN_D_12"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_12"
bottom: "SCNN_D_12"
top: "SCNN_D_12/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_12/relu"
bottom: "SCNN_D_12/message"
top: "SCNN_D_12/message"
type: "ReLU"
}
layer {
name: "SCNN_D_12/sum"
bottom: "SCNN_D_12/message"
bottom: "slice1_13"
top: "SCNN_D_13"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_13"
bottom: "SCNN_D_13"
top: "SCNN_D_13/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_13/relu"
bottom: "SCNN_D_13/message"
top: "SCNN_D_13/message"
type: "ReLU"
}
layer {
name: "SCNN_D_13/sum"
bottom: "SCNN_D_13/message"
bottom: "slice1_14"
top: "SCNN_D_14"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_14"
bottom: "SCNN_D_14"
top: "SCNN_D_14/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_14/relu"
bottom: "SCNN_D_14/message"
top: "SCNN_D_14/message"
type: "ReLU"
}
layer {
name: "SCNN_D_14/sum"
bottom: "SCNN_D_14/message"
bottom: "slice1_15"
top: "SCNN_D_15"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_15"
bottom: "SCNN_D_15"
top: "SCNN_D_15/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_15/relu"
bottom: "SCNN_D_15/message"
top: "SCNN_D_15/message"
type: "ReLU"
}
layer {
name: "SCNN_D_15/sum"
bottom: "SCNN_D_15/message"
bottom: "slice1_16"
top: "SCNN_D_16"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_16"
bottom: "SCNN_D_16"
top: "SCNN_D_16/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_16/relu"
bottom: "SCNN_D_16/message"
top: "SCNN_D_16/message"
type: "ReLU"
}
layer {
name: "SCNN_D_16/sum"
bottom: "SCNN_D_16/message"
bottom: "slice1_17"
top: "SCNN_D_17"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_17"
bottom: "SCNN_D_17"
top: "SCNN_D_17/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_17/relu"
bottom: "SCNN_D_17/message"
top: "SCNN_D_17/message"
type: "ReLU"
}
layer {
name: "SCNN_D_17/sum"
bottom: "SCNN_D_17/message"
bottom: "slice1_18"
top: "SCNN_D_18"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_18"
bottom: "SCNN_D_18"
top: "SCNN_D_18/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_18/relu"
bottom: "SCNN_D_18/message"
top: "SCNN_D_18/message"
type: "ReLU"
}
layer {
name: "SCNN_D_18/sum"
bottom: "SCNN_D_18/message"
bottom: "slice1_19"
top: "SCNN_D_19"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_19"
bottom: "SCNN_D_19"
top: "SCNN_D_19/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_19/relu"
bottom: "SCNN_D_19/message"
top: "SCNN_D_19/message"
type: "ReLU"
}
layer {
name: "SCNN_D_19/sum"
bottom: "SCNN_D_19/message"
bottom: "slice1_20"
top: "SCNN_D_20"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_20"
bottom: "SCNN_D_20"
top: "SCNN_D_20/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_20/relu"
bottom: "SCNN_D_20/message"
top: "SCNN_D_20/message"
type: "ReLU"
}
layer {
name: "SCNN_D_20/sum"
bottom: "SCNN_D_20/message"
bottom: "slice1_21"
top: "SCNN_D_21"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_21"
bottom: "SCNN_D_21"
top: "SCNN_D_21/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_21/relu"
bottom: "SCNN_D_21/message"
top: "SCNN_D_21/message"
type: "ReLU"
}
layer {
name: "SCNN_D_21/sum"
bottom: "SCNN_D_21/message"
bottom: "slice1_22"
top: "SCNN_D_22"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_22"
bottom: "SCNN_D_22"
top: "SCNN_D_22/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_22/relu"
bottom: "SCNN_D_22/message"
top: "SCNN_D_22/message"
type: "ReLU"
}
layer {
name: "SCNN_D_22/sum"
bottom: "SCNN_D_22/message"
bottom: "slice1_23"
top: "SCNN_D_23"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_23"
bottom: "SCNN_D_23"
top: "SCNN_D_23/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_23/relu"
bottom: "SCNN_D_23/message"
top: "SCNN_D_23/message"
type: "ReLU"
}
layer {
name: "SCNN_D_23/sum"
bottom: "SCNN_D_23/message"
bottom: "slice1_24"
top: "SCNN_D_24"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_24"
bottom: "SCNN_D_24"
top: "SCNN_D_24/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_24/relu"
bottom: "SCNN_D_24/message"
top: "SCNN_D_24/message"
type: "ReLU"
}
layer {
name: "SCNN_D_24/sum"
bottom: "SCNN_D_24/message"
bottom: "slice1_25"
top: "SCNN_D_25"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_25"
bottom: "SCNN_D_25"
top: "SCNN_D_25/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_25/relu"
bottom: "SCNN_D_25/message"
top: "SCNN_D_25/message"
type: "ReLU"
}
layer {
name: "SCNN_D_25/sum"
bottom: "SCNN_D_25/message"
bottom: "slice1_26"
top: "SCNN_D_26"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_26"
bottom: "SCNN_D_26"
top: "SCNN_D_26/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_26/relu"
bottom: "SCNN_D_26/message"
top: "SCNN_D_26/message"
type: "ReLU"
}
layer {
name: "SCNN_D_26/sum"
bottom: "SCNN_D_26/message"
bottom: "slice1_27"
top: "SCNN_D_27"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_27"
bottom: "SCNN_D_27"
top: "SCNN_D_27/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_27/relu"
bottom: "SCNN_D_27/message"
top: "SCNN_D_27/message"
type: "ReLU"
}
layer {
name: "SCNN_D_27/sum"
bottom: "SCNN_D_27/message"
bottom: "slice1_28"
top: "SCNN_D_28"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_28"
bottom: "SCNN_D_28"
top: "SCNN_D_28/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_28/relu"
bottom: "SCNN_D_28/message"
top: "SCNN_D_28/message"
type: "ReLU"
}
layer {
name: "SCNN_D_28/sum"
bottom: "SCNN_D_28/message"
bottom: "slice1_29"
top: "SCNN_D_29"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_29"
bottom: "SCNN_D_29"
top: "SCNN_D_29/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_29/relu"
bottom: "SCNN_D_29/message"
top: "SCNN_D_29/message"
type: "ReLU"
}
layer {
name: "SCNN_D_29/sum"
bottom: "SCNN_D_29/message"
bottom: "slice1_30"
top: "SCNN_D_30"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_30"
bottom: "SCNN_D_30"
top: "SCNN_D_30/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_30/relu"
bottom: "SCNN_D_30/message"
top: "SCNN_D_30/message"
type: "ReLU"
}
layer {
name: "SCNN_D_30/sum"
bottom: "SCNN_D_30/message"
bottom: "slice1_31"
top: "SCNN_D_31"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_31"
bottom: "SCNN_D_31"
top: "SCNN_D_31/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_31/relu"
bottom: "SCNN_D_31/message"
top: "SCNN_D_31/message"
type: "ReLU"
}
layer {
name: "SCNN_D_31/sum"
bottom: "SCNN_D_31/message"
bottom: "slice1_32"
top: "SCNN_D_32"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_32"
bottom: "SCNN_D_32"
top: "SCNN_D_32/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_32/relu"
bottom: "SCNN_D_32/message"
top: "SCNN_D_32/message"
type: "ReLU"
}
layer {
name: "SCNN_D_32/sum"
bottom: "SCNN_D_32/message"
bottom: "slice1_33"
top: "SCNN_D_33"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_33"
bottom: "SCNN_D_33"
top: "SCNN_D_33/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_33/relu"
bottom: "SCNN_D_33/message"
top: "SCNN_D_33/message"
type: "ReLU"
}
layer {
name: "SCNN_D_33/sum"
bottom: "SCNN_D_33/message"
bottom: "slice1_34"
top: "SCNN_D_34"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_34"
bottom: "SCNN_D_34"
top: "SCNN_D_34/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_34/relu"
bottom: "SCNN_D_34/message"
top: "SCNN_D_34/message"
type: "ReLU"
}
layer {
name: "SCNN_D_34/sum"
bottom: "SCNN_D_34/message"
bottom: "slice1_35"
top: "SCNN_D_35"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_35"
bottom: "SCNN_D_35"
top: "SCNN_D_35/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_35/relu"
bottom: "SCNN_D_35/message"
top: "SCNN_D_35/message"
type: "ReLU"
}
layer {
name: "SCNN_D_35/sum"
bottom: "SCNN_D_35/message"
bottom: "slice1_36"
top: "SCNN_D_36"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_36"
bottom: "SCNN_D_36"
top: "SCNN_D_36/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_36/relu"
bottom: "SCNN_D_36/message"
top: "SCNN_D_36/message"
type: "ReLU"
}
layer {
name: "SCNN_D_36/sum"
bottom: "SCNN_D_36/message"
bottom: "slice1_37"
top: "SCNN_D_37"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_37"
bottom: "SCNN_D_37"
top: "SCNN_D_37/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_37/relu"
bottom: "SCNN_D_37/message"
top: "SCNN_D_37/message"
type: "ReLU"
}
layer {
name: "SCNN_D_37/sum"
bottom: "SCNN_D_37/message"
bottom: "slice1_38"
top: "SCNN_D_38"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_38"
bottom: "SCNN_D_38"
top: "SCNN_D_38/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_38/relu"
bottom: "SCNN_D_38/message"
top: "SCNN_D_38/message"
type: "ReLU"
}
layer {
name: "SCNN_D_38/sum"
bottom: "SCNN_D_38/message"
bottom: "slice1_39"
top: "SCNN_D_39"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_39"
bottom: "SCNN_D_39"
top: "SCNN_D_39/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_39/relu"
bottom: "SCNN_D_39/message"
top: "SCNN_D_39/message"
type: "ReLU"
}
layer {
name: "SCNN_D_39/sum"
bottom: "SCNN_D_39/message"
bottom: "slice1_40"
top: "SCNN_D_40"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_40"
bottom: "SCNN_D_40"
top: "SCNN_D_40/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_40/relu"
bottom: "SCNN_D_40/message"
top: "SCNN_D_40/message"
type: "ReLU"
}
layer {
name: "SCNN_D_40/sum"
bottom: "SCNN_D_40/message"
bottom: "slice1_41"
top: "SCNN_D_41"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_41"
bottom: "SCNN_D_41"
top: "SCNN_D_41/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_41/relu"
bottom: "SCNN_D_41/message"
top: "SCNN_D_41/message"
type: "ReLU"
}
layer {
name: "SCNN_D_41/sum"
bottom: "SCNN_D_41/message"
bottom: "slice1_42"
top: "SCNN_D_42"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_42"
bottom: "SCNN_D_42"
top: "SCNN_D_42/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_42/relu"
bottom: "SCNN_D_42/message"
top: "SCNN_D_42/message"
type: "ReLU"
}
layer {
name: "SCNN_D_42/sum"
bottom: "SCNN_D_42/message"
bottom: "slice1_43"
top: "SCNN_D_43"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_43"
bottom: "SCNN_D_43"
top: "SCNN_D_43/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_43/relu"
bottom: "SCNN_D_43/message"
top: "SCNN_D_43/message"
type: "ReLU"
}
layer {
name: "SCNN_D_43/sum"
bottom: "SCNN_D_43/message"
bottom: "slice1_44"
top: "SCNN_D_44"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_44"
bottom: "SCNN_D_44"
top: "SCNN_D_44/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_44/relu"
bottom: "SCNN_D_44/message"
top: "SCNN_D_44/message"
type: "ReLU"
}
layer {
name: "SCNN_D_44/sum"
bottom: "SCNN_D_44/message"
bottom: "slice1_45"
top: "SCNN_D_45"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_45"
bottom: "SCNN_D_45"
top: "SCNN_D_45/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_45/relu"
bottom: "SCNN_D_45/message"
top: "SCNN_D_45/message"
type: "ReLU"
}
layer {
name: "SCNN_D_45/sum"
bottom: "SCNN_D_45/message"
bottom: "slice1_46"
top: "SCNN_D_46"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_46"
bottom: "SCNN_D_46"
top: "SCNN_D_46/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_46/relu"
bottom: "SCNN_D_46/message"
top: "SCNN_D_46/message"
type: "ReLU"
}
layer {
name: "SCNN_D_46/sum"
bottom: "SCNN_D_46/message"
bottom: "slice1_47"
top: "SCNN_D_47"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_47"
bottom: "SCNN_D_47"
top: "SCNN_D_47/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_47/relu"
bottom: "SCNN_D_47/message"
top: "SCNN_D_47/message"
type: "ReLU"
}
layer {
name: "SCNN_D_47/sum"
bottom: "SCNN_D_47/message"
bottom: "slice1_48"
top: "SCNN_D_48"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_48"
bottom: "SCNN_D_48"
top: "SCNN_D_48/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_48/relu"
bottom: "SCNN_D_48/message"
top: "SCNN_D_48/message"
type: "ReLU"
}
layer {
name: "SCNN_D_48/sum"
bottom: "SCNN_D_48/message"
bottom: "slice1_49"
top: "SCNN_D_49"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_49"
bottom: "SCNN_D_49"
top: "SCNN_D_49/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_49/relu"
bottom: "SCNN_D_49/message"
top: "SCNN_D_49/message"
type: "ReLU"
}
layer {
name: "SCNN_D_49/sum"
bottom: "SCNN_D_49/message"
bottom: "slice1_50"
top: "SCNN_D_50"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_50"
bottom: "SCNN_D_50"
top: "SCNN_D_50/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_50/relu"
bottom: "SCNN_D_50/message"
top: "SCNN_D_50/message"
type: "ReLU"
}
layer {
name: "SCNN_D_50/sum"
bottom: "SCNN_D_50/message"
bottom: "slice1_51"
top: "SCNN_D_51"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_51"
bottom: "SCNN_D_51"
top: "SCNN_D_51/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_51/relu"
bottom: "SCNN_D_51/message"
top: "SCNN_D_51/message"
type: "ReLU"
}
layer {
name: "SCNN_D_51/sum"
bottom: "SCNN_D_51/message"
bottom: "slice1_52"
top: "SCNN_D_52"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_52"
bottom: "SCNN_D_52"
top: "SCNN_D_52/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_52/relu"
bottom: "SCNN_D_52/message"
top: "SCNN_D_52/message"
type: "ReLU"
}
layer {
name: "SCNN_D_52/sum"
bottom: "SCNN_D_52/message"
bottom: "slice1_53"
top: "SCNN_D_53"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_53"
bottom: "SCNN_D_53"
top: "SCNN_D_53/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_53/relu"
bottom: "SCNN_D_53/message"
top: "SCNN_D_53/message"
type: "ReLU"
}
layer {
name: "SCNN_D_53/sum"
bottom: "SCNN_D_53/message"
bottom: "slice1_54"
top: "SCNN_D_54"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_54"
bottom: "SCNN_D_54"
top: "SCNN_D_54/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_54/relu"
bottom: "SCNN_D_54/message"
top: "SCNN_D_54/message"
type: "ReLU"
}
layer {
name: "SCNN_D_54/sum"
bottom: "SCNN_D_54/message"
bottom: "slice1_55"
top: "SCNN_D_55"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_55"
bottom: "SCNN_D_55"
top: "SCNN_D_55/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_55/relu"
bottom: "SCNN_D_55/message"
top: "SCNN_D_55/message"
type: "ReLU"
}
layer {
name: "SCNN_D_55/sum"
bottom: "SCNN_D_55/message"
bottom: "slice1_56"
top: "SCNN_D_56"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_56"
bottom: "SCNN_D_56"
top: "SCNN_D_56/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_56/relu"
bottom: "SCNN_D_56/message"
top: "SCNN_D_56/message"
type: "ReLU"
}
layer {
name: "SCNN_D_56/sum"
bottom: "SCNN_D_56/message"
bottom: "slice1_57"
top: "SCNN_D_57"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_57"
bottom: "SCNN_D_57"
top: "SCNN_D_57/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_57/relu"
bottom: "SCNN_D_57/message"
top: "SCNN_D_57/message"
type: "ReLU"
}
layer {
name: "SCNN_D_57/sum"
bottom: "SCNN_D_57/message"
bottom: "slice1_58"
top: "SCNN_D_58"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_58"
bottom: "SCNN_D_58"
top: "SCNN_D_58/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_58/relu"
bottom: "SCNN_D_58/message"
top: "SCNN_D_58/message"
type: "ReLU"
}
layer {
name: "SCNN_D_58/sum"
bottom: "SCNN_D_58/message"
bottom: "slice1_59"
top: "SCNN_D_59"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_D_59"
bottom: "SCNN_D_59"
top: "SCNN_D_59/message"
type: "Convolution"
param {
name: "SCNN_D_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_D_59/relu"
bottom: "SCNN_D_59/message"
top: "SCNN_D_59/message"
type: "ReLU"
}
layer {
name: "SCNN_D_59/sum"
bottom: "SCNN_D_59/message"
bottom: "slice1_60"
top: "SCNN_D_60"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_60"
bottom: "SCNN_D_60"
top: "SCNN_U_60/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_60/relu"
bottom: "SCNN_U_60/message"
top: "SCNN_U_60/message"
type: "ReLU"
}
layer {
name: "SCNN_U_60/sum"
bottom: "SCNN_U_60/message"
bottom: "SCNN_D_59"
top: "SCNN_U_59"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_59"
bottom: "SCNN_U_59"
top: "SCNN_U_59/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_59/relu"
bottom: "SCNN_U_59/message"
top: "SCNN_U_59/message"
type: "ReLU"
}
layer {
name: "SCNN_U_59/sum"
bottom: "SCNN_U_59/message"
bottom: "SCNN_D_58"
top: "SCNN_U_58"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_58"
bottom: "SCNN_U_58"
top: "SCNN_U_58/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_58/relu"
bottom: "SCNN_U_58/message"
top: "SCNN_U_58/message"
type: "ReLU"
}
layer {
name: "SCNN_U_58/sum"
bottom: "SCNN_U_58/message"
bottom: "SCNN_D_57"
top: "SCNN_U_57"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_57"
bottom: "SCNN_U_57"
top: "SCNN_U_57/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_57/relu"
bottom: "SCNN_U_57/message"
top: "SCNN_U_57/message"
type: "ReLU"
}
layer {
name: "SCNN_U_57/sum"
bottom: "SCNN_U_57/message"
bottom: "SCNN_D_56"
top: "SCNN_U_56"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_56"
bottom: "SCNN_U_56"
top: "SCNN_U_56/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_56/relu"
bottom: "SCNN_U_56/message"
top: "SCNN_U_56/message"
type: "ReLU"
}
layer {
name: "SCNN_U_56/sum"
bottom: "SCNN_U_56/message"
bottom: "SCNN_D_55"
top: "SCNN_U_55"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_55"
bottom: "SCNN_U_55"
top: "SCNN_U_55/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_55/relu"
bottom: "SCNN_U_55/message"
top: "SCNN_U_55/message"
type: "ReLU"
}
layer {
name: "SCNN_U_55/sum"
bottom: "SCNN_U_55/message"
bottom: "SCNN_D_54"
top: "SCNN_U_54"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_54"
bottom: "SCNN_U_54"
top: "SCNN_U_54/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_54/relu"
bottom: "SCNN_U_54/message"
top: "SCNN_U_54/message"
type: "ReLU"
}
layer {
name: "SCNN_U_54/sum"
bottom: "SCNN_U_54/message"
bottom: "SCNN_D_53"
top: "SCNN_U_53"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_53"
bottom: "SCNN_U_53"
top: "SCNN_U_53/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_53/relu"
bottom: "SCNN_U_53/message"
top: "SCNN_U_53/message"
type: "ReLU"
}
layer {
name: "SCNN_U_53/sum"
bottom: "SCNN_U_53/message"
bottom: "SCNN_D_52"
top: "SCNN_U_52"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_52"
bottom: "SCNN_U_52"
top: "SCNN_U_52/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_52/relu"
bottom: "SCNN_U_52/message"
top: "SCNN_U_52/message"
type: "ReLU"
}
layer {
name: "SCNN_U_52/sum"
bottom: "SCNN_U_52/message"
bottom: "SCNN_D_51"
top: "SCNN_U_51"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_51"
bottom: "SCNN_U_51"
top: "SCNN_U_51/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_51/relu"
bottom: "SCNN_U_51/message"
top: "SCNN_U_51/message"
type: "ReLU"
}
layer {
name: "SCNN_U_51/sum"
bottom: "SCNN_U_51/message"
bottom: "SCNN_D_50"
top: "SCNN_U_50"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_50"
bottom: "SCNN_U_50"
top: "SCNN_U_50/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_50/relu"
bottom: "SCNN_U_50/message"
top: "SCNN_U_50/message"
type: "ReLU"
}
layer {
name: "SCNN_U_50/sum"
bottom: "SCNN_U_50/message"
bottom: "SCNN_D_49"
top: "SCNN_U_49"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_49"
bottom: "SCNN_U_49"
top: "SCNN_U_49/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_49/relu"
bottom: "SCNN_U_49/message"
top: "SCNN_U_49/message"
type: "ReLU"
}
layer {
name: "SCNN_U_49/sum"
bottom: "SCNN_U_49/message"
bottom: "SCNN_D_48"
top: "SCNN_U_48"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_48"
bottom: "SCNN_U_48"
top: "SCNN_U_48/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_48/relu"
bottom: "SCNN_U_48/message"
top: "SCNN_U_48/message"
type: "ReLU"
}
layer {
name: "SCNN_U_48/sum"
bottom: "SCNN_U_48/message"
bottom: "SCNN_D_47"
top: "SCNN_U_47"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_47"
bottom: "SCNN_U_47"
top: "SCNN_U_47/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_47/relu"
bottom: "SCNN_U_47/message"
top: "SCNN_U_47/message"
type: "ReLU"
}
layer {
name: "SCNN_U_47/sum"
bottom: "SCNN_U_47/message"
bottom: "SCNN_D_46"
top: "SCNN_U_46"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_46"
bottom: "SCNN_U_46"
top: "SCNN_U_46/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_46/relu"
bottom: "SCNN_U_46/message"
top: "SCNN_U_46/message"
type: "ReLU"
}
layer {
name: "SCNN_U_46/sum"
bottom: "SCNN_U_46/message"
bottom: "SCNN_D_45"
top: "SCNN_U_45"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_45"
bottom: "SCNN_U_45"
top: "SCNN_U_45/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_45/relu"
bottom: "SCNN_U_45/message"
top: "SCNN_U_45/message"
type: "ReLU"
}
layer {
name: "SCNN_U_45/sum"
bottom: "SCNN_U_45/message"
bottom: "SCNN_D_44"
top: "SCNN_U_44"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_44"
bottom: "SCNN_U_44"
top: "SCNN_U_44/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_44/relu"
bottom: "SCNN_U_44/message"
top: "SCNN_U_44/message"
type: "ReLU"
}
layer {
name: "SCNN_U_44/sum"
bottom: "SCNN_U_44/message"
bottom: "SCNN_D_43"
top: "SCNN_U_43"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_43"
bottom: "SCNN_U_43"
top: "SCNN_U_43/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_43/relu"
bottom: "SCNN_U_43/message"
top: "SCNN_U_43/message"
type: "ReLU"
}
layer {
name: "SCNN_U_43/sum"
bottom: "SCNN_U_43/message"
bottom: "SCNN_D_42"
top: "SCNN_U_42"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_42"
bottom: "SCNN_U_42"
top: "SCNN_U_42/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_42/relu"
bottom: "SCNN_U_42/message"
top: "SCNN_U_42/message"
type: "ReLU"
}
layer {
name: "SCNN_U_42/sum"
bottom: "SCNN_U_42/message"
bottom: "SCNN_D_41"
top: "SCNN_U_41"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_41"
bottom: "SCNN_U_41"
top: "SCNN_U_41/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_41/relu"
bottom: "SCNN_U_41/message"
top: "SCNN_U_41/message"
type: "ReLU"
}
layer {
name: "SCNN_U_41/sum"
bottom: "SCNN_U_41/message"
bottom: "SCNN_D_40"
top: "SCNN_U_40"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_40"
bottom: "SCNN_U_40"
top: "SCNN_U_40/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_40/relu"
bottom: "SCNN_U_40/message"
top: "SCNN_U_40/message"
type: "ReLU"
}
layer {
name: "SCNN_U_40/sum"
bottom: "SCNN_U_40/message"
bottom: "SCNN_D_39"
top: "SCNN_U_39"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_39"
bottom: "SCNN_U_39"
top: "SCNN_U_39/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_39/relu"
bottom: "SCNN_U_39/message"
top: "SCNN_U_39/message"
type: "ReLU"
}
layer {
name: "SCNN_U_39/sum"
bottom: "SCNN_U_39/message"
bottom: "SCNN_D_38"
top: "SCNN_U_38"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_38"
bottom: "SCNN_U_38"
top: "SCNN_U_38/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_38/relu"
bottom: "SCNN_U_38/message"
top: "SCNN_U_38/message"
type: "ReLU"
}
layer {
name: "SCNN_U_38/sum"
bottom: "SCNN_U_38/message"
bottom: "SCNN_D_37"
top: "SCNN_U_37"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_37"
bottom: "SCNN_U_37"
top: "SCNN_U_37/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_37/relu"
bottom: "SCNN_U_37/message"
top: "SCNN_U_37/message"
type: "ReLU"
}
layer {
name: "SCNN_U_37/sum"
bottom: "SCNN_U_37/message"
bottom: "SCNN_D_36"
top: "SCNN_U_36"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_36"
bottom: "SCNN_U_36"
top: "SCNN_U_36/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_36/relu"
bottom: "SCNN_U_36/message"
top: "SCNN_U_36/message"
type: "ReLU"
}
layer {
name: "SCNN_U_36/sum"
bottom: "SCNN_U_36/message"
bottom: "SCNN_D_35"
top: "SCNN_U_35"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_35"
bottom: "SCNN_U_35"
top: "SCNN_U_35/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_35/relu"
bottom: "SCNN_U_35/message"
top: "SCNN_U_35/message"
type: "ReLU"
}
layer {
name: "SCNN_U_35/sum"
bottom: "SCNN_U_35/message"
bottom: "SCNN_D_34"
top: "SCNN_U_34"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_34"
bottom: "SCNN_U_34"
top: "SCNN_U_34/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_34/relu"
bottom: "SCNN_U_34/message"
top: "SCNN_U_34/message"
type: "ReLU"
}
layer {
name: "SCNN_U_34/sum"
bottom: "SCNN_U_34/message"
bottom: "SCNN_D_33"
top: "SCNN_U_33"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_33"
bottom: "SCNN_U_33"
top: "SCNN_U_33/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_33/relu"
bottom: "SCNN_U_33/message"
top: "SCNN_U_33/message"
type: "ReLU"
}
layer {
name: "SCNN_U_33/sum"
bottom: "SCNN_U_33/message"
bottom: "SCNN_D_32"
top: "SCNN_U_32"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_32"
bottom: "SCNN_U_32"
top: "SCNN_U_32/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_32/relu"
bottom: "SCNN_U_32/message"
top: "SCNN_U_32/message"
type: "ReLU"
}
layer {
name: "SCNN_U_32/sum"
bottom: "SCNN_U_32/message"
bottom: "SCNN_D_31"
top: "SCNN_U_31"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_31"
bottom: "SCNN_U_31"
top: "SCNN_U_31/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_31/relu"
bottom: "SCNN_U_31/message"
top: "SCNN_U_31/message"
type: "ReLU"
}
layer {
name: "SCNN_U_31/sum"
bottom: "SCNN_U_31/message"
bottom: "SCNN_D_30"
top: "SCNN_U_30"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_30"
bottom: "SCNN_U_30"
top: "SCNN_U_30/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_30/relu"
bottom: "SCNN_U_30/message"
top: "SCNN_U_30/message"
type: "ReLU"
}
layer {
name: "SCNN_U_30/sum"
bottom: "SCNN_U_30/message"
bottom: "SCNN_D_29"
top: "SCNN_U_29"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_29"
bottom: "SCNN_U_29"
top: "SCNN_U_29/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_29/relu"
bottom: "SCNN_U_29/message"
top: "SCNN_U_29/message"
type: "ReLU"
}
layer {
name: "SCNN_U_29/sum"
bottom: "SCNN_U_29/message"
bottom: "SCNN_D_28"
top: "SCNN_U_28"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_28"
bottom: "SCNN_U_28"
top: "SCNN_U_28/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_28/relu"
bottom: "SCNN_U_28/message"
top: "SCNN_U_28/message"
type: "ReLU"
}
layer {
name: "SCNN_U_28/sum"
bottom: "SCNN_U_28/message"
bottom: "SCNN_D_27"
top: "SCNN_U_27"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_27"
bottom: "SCNN_U_27"
top: "SCNN_U_27/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_27/relu"
bottom: "SCNN_U_27/message"
top: "SCNN_U_27/message"
type: "ReLU"
}
layer {
name: "SCNN_U_27/sum"
bottom: "SCNN_U_27/message"
bottom: "SCNN_D_26"
top: "SCNN_U_26"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_26"
bottom: "SCNN_U_26"
top: "SCNN_U_26/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_26/relu"
bottom: "SCNN_U_26/message"
top: "SCNN_U_26/message"
type: "ReLU"
}
layer {
name: "SCNN_U_26/sum"
bottom: "SCNN_U_26/message"
bottom: "SCNN_D_25"
top: "SCNN_U_25"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_25"
bottom: "SCNN_U_25"
top: "SCNN_U_25/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_25/relu"
bottom: "SCNN_U_25/message"
top: "SCNN_U_25/message"
type: "ReLU"
}
layer {
name: "SCNN_U_25/sum"
bottom: "SCNN_U_25/message"
bottom: "SCNN_D_24"
top: "SCNN_U_24"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_24"
bottom: "SCNN_U_24"
top: "SCNN_U_24/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_24/relu"
bottom: "SCNN_U_24/message"
top: "SCNN_U_24/message"
type: "ReLU"
}
layer {
name: "SCNN_U_24/sum"
bottom: "SCNN_U_24/message"
bottom: "SCNN_D_23"
top: "SCNN_U_23"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_23"
bottom: "SCNN_U_23"
top: "SCNN_U_23/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_23/relu"
bottom: "SCNN_U_23/message"
top: "SCNN_U_23/message"
type: "ReLU"
}
layer {
name: "SCNN_U_23/sum"
bottom: "SCNN_U_23/message"
bottom: "SCNN_D_22"
top: "SCNN_U_22"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_22"
bottom: "SCNN_U_22"
top: "SCNN_U_22/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_22/relu"
bottom: "SCNN_U_22/message"
top: "SCNN_U_22/message"
type: "ReLU"
}
layer {
name: "SCNN_U_22/sum"
bottom: "SCNN_U_22/message"
bottom: "SCNN_D_21"
top: "SCNN_U_21"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_21"
bottom: "SCNN_U_21"
top: "SCNN_U_21/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_21/relu"
bottom: "SCNN_U_21/message"
top: "SCNN_U_21/message"
type: "ReLU"
}
layer {
name: "SCNN_U_21/sum"
bottom: "SCNN_U_21/message"
bottom: "SCNN_D_20"
top: "SCNN_U_20"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_20"
bottom: "SCNN_U_20"
top: "SCNN_U_20/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_20/relu"
bottom: "SCNN_U_20/message"
top: "SCNN_U_20/message"
type: "ReLU"
}
layer {
name: "SCNN_U_20/sum"
bottom: "SCNN_U_20/message"
bottom: "SCNN_D_19"
top: "SCNN_U_19"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_19"
bottom: "SCNN_U_19"
top: "SCNN_U_19/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_19/relu"
bottom: "SCNN_U_19/message"
top: "SCNN_U_19/message"
type: "ReLU"
}
layer {
name: "SCNN_U_19/sum"
bottom: "SCNN_U_19/message"
bottom: "SCNN_D_18"
top: "SCNN_U_18"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_18"
bottom: "SCNN_U_18"
top: "SCNN_U_18/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_18/relu"
bottom: "SCNN_U_18/message"
top: "SCNN_U_18/message"
type: "ReLU"
}
layer {
name: "SCNN_U_18/sum"
bottom: "SCNN_U_18/message"
bottom: "SCNN_D_17"
top: "SCNN_U_17"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_17"
bottom: "SCNN_U_17"
top: "SCNN_U_17/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_17/relu"
bottom: "SCNN_U_17/message"
top: "SCNN_U_17/message"
type: "ReLU"
}
layer {
name: "SCNN_U_17/sum"
bottom: "SCNN_U_17/message"
bottom: "SCNN_D_16"
top: "SCNN_U_16"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_16"
bottom: "SCNN_U_16"
top: "SCNN_U_16/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_16/relu"
bottom: "SCNN_U_16/message"
top: "SCNN_U_16/message"
type: "ReLU"
}
layer {
name: "SCNN_U_16/sum"
bottom: "SCNN_U_16/message"
bottom: "SCNN_D_15"
top: "SCNN_U_15"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_15"
bottom: "SCNN_U_15"
top: "SCNN_U_15/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_15/relu"
bottom: "SCNN_U_15/message"
top: "SCNN_U_15/message"
type: "ReLU"
}
layer {
name: "SCNN_U_15/sum"
bottom: "SCNN_U_15/message"
bottom: "SCNN_D_14"
top: "SCNN_U_14"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_14"
bottom: "SCNN_U_14"
top: "SCNN_U_14/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_14/relu"
bottom: "SCNN_U_14/message"
top: "SCNN_U_14/message"
type: "ReLU"
}
layer {
name: "SCNN_U_14/sum"
bottom: "SCNN_U_14/message"
bottom: "SCNN_D_13"
top: "SCNN_U_13"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_13"
bottom: "SCNN_U_13"
top: "SCNN_U_13/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_13/relu"
bottom: "SCNN_U_13/message"
top: "SCNN_U_13/message"
type: "ReLU"
}
layer {
name: "SCNN_U_13/sum"
bottom: "SCNN_U_13/message"
bottom: "SCNN_D_12"
top: "SCNN_U_12"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_12"
bottom: "SCNN_U_12"
top: "SCNN_U_12/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_12/relu"
bottom: "SCNN_U_12/message"
top: "SCNN_U_12/message"
type: "ReLU"
}
layer {
name: "SCNN_U_12/sum"
bottom: "SCNN_U_12/message"
bottom: "SCNN_D_11"
top: "SCNN_U_11"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_11"
bottom: "SCNN_U_11"
top: "SCNN_U_11/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_11/relu"
bottom: "SCNN_U_11/message"
top: "SCNN_U_11/message"
type: "ReLU"
}
layer {
name: "SCNN_U_11/sum"
bottom: "SCNN_U_11/message"
bottom: "SCNN_D_10"
top: "SCNN_U_10"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_10"
bottom: "SCNN_U_10"
top: "SCNN_U_10/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_10/relu"
bottom: "SCNN_U_10/message"
top: "SCNN_U_10/message"
type: "ReLU"
}
layer {
name: "SCNN_U_10/sum"
bottom: "SCNN_U_10/message"
bottom: "SCNN_D_9"
top: "SCNN_U_9"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_9"
bottom: "SCNN_U_9"
top: "SCNN_U_9/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_9/relu"
bottom: "SCNN_U_9/message"
top: "SCNN_U_9/message"
type: "ReLU"
}
layer {
name: "SCNN_U_9/sum"
bottom: "SCNN_U_9/message"
bottom: "SCNN_D_8"
top: "SCNN_U_8"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_8"
bottom: "SCNN_U_8"
top: "SCNN_U_8/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_8/relu"
bottom: "SCNN_U_8/message"
top: "SCNN_U_8/message"
type: "ReLU"
}
layer {
name: "SCNN_U_8/sum"
bottom: "SCNN_U_8/message"
bottom: "SCNN_D_7"
top: "SCNN_U_7"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_7"
bottom: "SCNN_U_7"
top: "SCNN_U_7/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_7/relu"
bottom: "SCNN_U_7/message"
top: "SCNN_U_7/message"
type: "ReLU"
}
layer {
name: "SCNN_U_7/sum"
bottom: "SCNN_U_7/message"
bottom: "SCNN_D_6"
top: "SCNN_U_6"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_6"
bottom: "SCNN_U_6"
top: "SCNN_U_6/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_6/relu"
bottom: "SCNN_U_6/message"
top: "SCNN_U_6/message"
type: "ReLU"
}
layer {
name: "SCNN_U_6/sum"
bottom: "SCNN_U_6/message"
bottom: "SCNN_D_5"
top: "SCNN_U_5"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_5"
bottom: "SCNN_U_5"
top: "SCNN_U_5/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_5/relu"
bottom: "SCNN_U_5/message"
top: "SCNN_U_5/message"
type: "ReLU"
}
layer {
name: "SCNN_U_5/sum"
bottom: "SCNN_U_5/message"
bottom: "SCNN_D_4"
top: "SCNN_U_4"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_4"
bottom: "SCNN_U_4"
top: "SCNN_U_4/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_4/relu"
bottom: "SCNN_U_4/message"
top: "SCNN_U_4/message"
type: "ReLU"
}
layer {
name: "SCNN_U_4/sum"
bottom: "SCNN_U_4/message"
bottom: "SCNN_D_3"
top: "SCNN_U_3"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_3"
bottom: "SCNN_U_3"
top: "SCNN_U_3/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_3/relu"
bottom: "SCNN_U_3/message"
top: "SCNN_U_3/message"
type: "ReLU"
}
layer {
name: "SCNN_U_3/sum"
bottom: "SCNN_U_3/message"
bottom: "SCNN_D_2"
top: "SCNN_U_2"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "SCNN_U_2"
bottom: "SCNN_U_2"
top: "SCNN_U_2/message"
type: "Convolution"
param {
name: "SCNN_U_w"
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_h: 1
kernel_w: 5
pad_h: 0
pad_w: 2
stride: 1
bias_term: false
weight_filler {type: "gaussian" std: 0.03536 }
}
}
layer {
name: "SCNN_U_2/relu"
bottom: "SCNN_U_2/message"
top: "SCNN_U_2/message"
type: "ReLU"
}
layer {
name: "SCNN_U_2/sum"
bottom: "SCNN_U_2/message"
bottom: "slice1_1"
top: "SCNN_U_1"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
name: "Concat1"
type: "Concat"
bottom: "SCNN_U_1"
bottom: "SCNN_U_2"
bottom: "SCNN_U_3"
bottom: "SCNN_U_4"
bottom: "SCNN_U_5"
bottom: "SCNN_U_6"
bottom: "SCNN_U_7"
bottom: "SCNN_U_8"
bottom: "SCNN_U_9"
bottom: "SCNN_U_10"
bottom: "SCNN_U_11"
bottom: "SCNN_U_12"
bottom: "SCNN_U_13"
bottom: "SCNN_U_14"
bottom: "SCNN_U_15"
bottom: "SCNN_U_16"
bottom: "SCNN_U_17"
bottom: "SCNN_U_18"
bottom: "SCNN_U_19"
bottom: "SCNN_U_20"
bottom: "SCNN_U_21"
bottom: "SCNN_U_22"
bottom: "SCNN_U_23"
bottom: "SCNN_U_24"
bottom: "SCNN_U_25"
bottom: "SCNN_U_26"
bottom: "SCNN_U_27"
bottom: "SCNN_U_28"
bottom: "SCNN_U_29"
bottom: "SCNN_U_30"
bottom: "SCNN_U_31"
bottom: "SCNN_U_32"
bottom: "SCNN_U_33"
bottom: "SCNN_U_34"
bottom: "SCNN_U_35"
bottom: "SCNN_U_36"
bottom: "SCNN_U_37"
bottom: "SCNN_U_38"
bottom: "SCNN_U_39"
bottom: "SCNN_U_40"
bottom: "SCNN_U_41"
bottom: "SCNN_U_42"
bottom: "SCNN_U_43"
bottom: "SCNN_U_44"
bottom: "SCNN_U_45"
bottom: "SCNN_U_46"
bottom: "SCNN_U_47"
bottom: "SCNN_U_48"
bottom: "SCNN_U_49"
bottom: "SCNN_U_50"
bottom: "SCNN_U_51"
bottom: "SCNN_U_52"
bottom: "SCNN_U_53"
bottom: "SCNN_U_54"
bottom: "SCNN_U_55"
bottom: "SCNN_U_56"
bottom: "SCNN_U_57"
bottom: "SCNN_U_58"
bottom: "SCNN_U_59"
bottom: "SCNN_D_60"
top: "SCNN_U"
concat_param {
axis: 2
}
}
layer {
name: "conv6"
type: "Convolution"
bottom: "SCNN_U"
top: "conv6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "deconv_out"
type: "Deconvolution"
bottom: "conv6"
top: "deconv_out"
param {
lr_mult: 1
decay_mult: 0
}
convolution_param {
kernel_size: 16 # {{2 * factor _ factor % 2}} 2 * 2 _ 0
stride: 8 # {{factor}}
num_output: 32 # {{C}}
#group: 64 # {{C}}
pad: 4 # {{ceil((factor _ 1) / 2.)}} 2 _ 1 / 2
weight_filler: {type: "xavier" }
bias_filler {
type: "constant"
value: 0
}
}
}
################## semantic segmentation output layer ###################
layer {
name: "conv_out"
type: "Convolution"
bottom: "deconv_out"
top: "conv_out"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 13
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "softmax"
type: "Softmax"
bottom: "conv_out"
top: "softmax"
}
################ Vanishing point subnet ###############
###### conv layers for feature translation #######
layer {
name: "conv8_1"
type: "Convolution"
bottom: "conv7_2"
top: "conv8_1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
dilation: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv8_1_bn"
type: "BatchNorm"
bottom: "conv8_1"
top: "conv8_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
batch_norm_param {
eps: 1e-06
}
}
layer {
name: "conv8_1_scale"
type: "Scale"
bottom: "conv8_1"
top: "conv8_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv8_1_relu"
type: "ReLU"
bottom: "conv8_1"
top: "conv8_1"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "conv8_2"
type: "Convolution"
bottom: "conv8_1"
top: "conv8_2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
dilation: 1
stride: 2
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "conv8_2_bn"
type: "BatchNorm"
bottom: "conv8_2"
top: "conv8_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
batch_norm_param {
eps: 1e-06
}
}
layer {
name: "conv8_2_scale"
type: "Scale"
bottom: "conv8_2"
top: "conv8_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "conv8_2_relu"
type: "ReLU"
bottom: "conv8_2"
top: "conv8_2"
relu_param {
negative_slope: 0.0
}
}
########## fc layer #############
layer {
name: "fc1"
type: "InnerProduct"
bottom: "conv8_2"
top: "fc1"
# learning rate and decay multipliers for the weights
param {
lr_mult: 1
decay_mult: 1
}
# learning rate and decay multipliers for the biases
param {
lr_mult: 1
decay_mult: 0
}
inner_product_param {
num_output: 64
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "fc1_bn"
type: "BatchNorm"
bottom: "fc1"
top: "fc1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
batch_norm_param {
eps: 1e-06
}
}
layer {
name: "fc1_scale"
type: "Scale"
bottom: "fc1"
top: "fc1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
filler {
type: "constant"
value: 1
}
bias_term: true
}
}
layer {
name: "fc1_relu"
type: "ReLU"
bottom: "fc1"
top: "fc1"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "fc_out"
type: "InnerProduct"
bottom: "fc1"
top: "fc_out"
# learning rate and decay multipliers for the weights
param {
lr_mult: 1
decay_mult: 1
}
# learning rate and decay multipliers for the biases
param {
lr_mult: 1
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment