Last active
July 4, 2016 04:24
-
-
Save sicktastic/1db35b671de0381002f11c6444ac210b to your computer and use it in GitHub Desktop.
Great exercise for particle filter https://goo.gl/1d6pKe
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# In this exercise, you should implement the | |
# resampler shown in the previous video. | |
from math import * | |
import random | |
landmarks = [[20.0, 20.0], [80.0, 80.0], [20.0, 80.0], [80.0, 20.0]] | |
world_size = 100.0 | |
class robot: | |
def __init__(self): | |
self.x = random.random() * world_size | |
self.y = random.random() * world_size | |
self.orientation = random.random() * 2.0 * pi | |
self.forward_noise = 0.0; | |
self.turn_noise = 0.0; | |
self.sense_noise = 0.0; | |
def set(self, new_x, new_y, new_orientation): | |
if new_x < 0 or new_x >= world_size: | |
raise ValueError, 'X coordinate out of bound' | |
if new_y < 0 or new_y >= world_size: | |
raise ValueError, 'Y coordinate out of bound' | |
if new_orientation < 0 or new_orientation >= 2 * pi: | |
raise ValueError, 'Orientation must be in [0..2pi]' | |
self.x = float(new_x) | |
self.y = float(new_y) | |
self.orientation = float(new_orientation) | |
def set_noise(self, new_f_noise, new_t_noise, new_s_noise): | |
# makes it possible to change the noise parameters | |
# this is often useful in particle filters | |
self.forward_noise = float(new_f_noise); | |
self.turn_noise = float(new_t_noise); | |
self.sense_noise = float(new_s_noise); | |
def sense(self): | |
Z = [] | |
for i in range(len(landmarks)): | |
dist = sqrt((self.x - landmarks[i][0]) ** 2 + (self.y - landmarks[i][1]) ** 2) | |
dist += random.gauss(0.0, self.sense_noise) | |
Z.append(dist) | |
return Z | |
def move(self, turn, forward): | |
if forward < 0: | |
raise ValueError, 'Robot cant move backwards' | |
# turn, and add randomness to the turning command | |
orientation = self.orientation + float(turn) + random.gauss(0.0, self.turn_noise) | |
orientation %= 2 * pi | |
# move, and add randomness to the motion command | |
dist = float(forward) + random.gauss(0.0, self.forward_noise) | |
x = self.x + (cos(orientation) * dist) | |
y = self.y + (sin(orientation) * dist) | |
x %= world_size # cyclic truncate | |
y %= world_size | |
# set particle | |
res = robot() | |
res.set(x, y, orientation) | |
res.set_noise(self.forward_noise, self.turn_noise, self.sense_noise) | |
return res | |
def Gaussian(self, mu, sigma, x): | |
# calculates the probability of x for 1-dim Gaussian with mean mu and var. sigma | |
return exp(- ((mu - x) ** 2) / (sigma ** 2) / 2.0) / sqrt(2.0 * pi * (sigma ** 2)) | |
def measurement_prob(self, measurement): | |
# calculates how likely a measurement should be | |
prob = 1.0; | |
for i in range(len(landmarks)): | |
dist = sqrt((self.x - landmarks[i][0]) ** 2 + (self.y - landmarks[i][1]) ** 2) | |
prob *= self.Gaussian(dist, self.sense_noise, measurement[i]) | |
return prob | |
def __repr__(self): | |
return '[x=%.6s y=%.6s orient=%.6s]' % (str(self.x), str(self.y), str(self.orientation)) | |
myrobot = robot() | |
myrobot = myrobot.move(0.1, 5.0) | |
Z = myrobot.sense() | |
N = 1000 | |
p = [] | |
for i in range(N): | |
x = robot() | |
x.set_noise(0.05, 0.05, 5.0) | |
p.append(x) | |
p2 = [] | |
for i in range(N): | |
p2.append(p[i].move(0.1, 5.0)) | |
p = p2 | |
w = [] | |
for i in range(N): | |
w.append(p[i].measurement_prob(Z)) | |
p3 = [] | |
index = int(random.random() * N) | |
beta = 0.0 | |
mw = max(w) | |
for i in range(N): | |
beta += random.random() * 2.0 * mw | |
while beta > w[index]: | |
beta -= w[index] | |
index = (index + 1) % N | |
p3.append(p[index]) | |
p = p3 | |
print p |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment