Created
March 14, 2018 18:43
-
-
Save sidaw/2f6bca1e3a54ebbdeabd9faefa95ee32 to your computer and use it in GitHub Desktop.
tree_comm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!-- Specify your Handlebars template here. | |
The following JavaScript context will be passed to the template: | |
{ | |
files: [{ | |
name: 'The filename', | |
content: { | |
text: 'The file content', | |
html: '<p>The file content</p>', | |
yamlProperties: 'The file properties in YAML format', | |
properties: { | |
// Computed file properties object | |
}, | |
toc: [ | |
// Table Of Contents tree | |
] | |
} | |
}] | |
} | |
As an example: | |
will produce: | |
<html><body><p>The file content</p></body></html> | |
You can use Handlebars built-in helpers and the custom StackEdit ones: | |
<ul> | |
<li> | |
<ul> | |
<li><a href="#simple-reference-game">Simple reference game</a></li> | |
<li><a href="#structured-reference-game">Structured reference game</a> | |
<ul> | |
<li><a href="#adaptation">Adaptation</a></li> | |
<li><a href="#language">Language</a></li> | |
</ul> | |
</li> | |
</ul> | |
</li> | |
</ul> | |
will produce a clickable TOC. | |
<ul> | |
<li> | |
<ul> | |
<li><a href="#simple-reference-game">Simple reference game</a></li> | |
<li><a href="#structured-reference-game">Structured reference game</a> | |
<ul> | |
<li><a href="#adaptation">Adaptation</a></li> | |
<li><a href="#language">Language</a></li> | |
</ul> | |
</li> | |
</ul> | |
</li> | |
</ul> | |
will limit the TOC depth to 3. | |
--> | |
<html><body><p>How can human communicate better with computer systems?</p> | |
<h2 id="simple-reference-game">Simple reference game</h2> | |
<p>Suppose there are a finite set of messages <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.68333em;"></span><span class="strut bottom" style="height: 0.68333em; vertical-align: 0em;"></span><span class="base"><span class="mord mathit" style="margin-right: 0.07847em;">X</span></span></span></span></span> expressing a finite set of meanings <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.68333em;"></span><span class="strut bottom" style="height: 0.68333em; vertical-align: 0em;"></span><span class="base"><span class="mord mathit" style="margin-right: 0.22222em;">Y</span></span></span></span></span>.</p> | |
<ol> | |
<li>Nature picks the semantics <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>y</mi><mo>∈</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">y \in Y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.68333em;"></span><span class="strut bottom" style="height: 0.87777em; vertical-align: -0.19444em;"></span><span class="base"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="mrel">∈</span><span class="mord mathit" style="margin-right: 0.22222em;">Y</span></span></span></span></span></li> | |
<li>Alice produce <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.43056em;"></span><span class="strut bottom" style="height: 0.43056em; vertical-align: 0em;"></span><span class="base"><span class="mord mathit">x</span></span></span></span></span> given <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.43056em;"></span><span class="strut bottom" style="height: 0.625em; vertical-align: -0.19444em;"></span><span class="base"><span class="mord mathit" style="margin-right: 0.03588em;">y</span></span></span></span></span></li> | |
<li>Bob produce <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>y</mi><mo mathvariant="normal">′</mo></msup></mrow><annotation encoding="application/x-tex">y'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.751892em;"></span><span class="strut bottom" style="height: 0.946332em; vertical-align: -0.19444em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.751892em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathrm mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span> given <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.43056em;"></span><span class="strut bottom" style="height: 0.43056em; vertical-align: 0em;"></span><span class="base"><span class="mord mathit">x</span></span></span></span></span></li> | |
<li>Receive reward if <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>y</mi><mo>=</mo><msup><mi>y</mi><mo mathvariant="normal">′</mo></msup></mrow><annotation encoding="application/x-tex">y=y'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.751892em;"></span><span class="strut bottom" style="height: 0.946332em; vertical-align: -0.19444em;"></span><span class="base"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="mrel">=</span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.751892em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathrm mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span></li> | |
</ol> | |
<p>In the standard machine learning setting, Alice uses a fixed distribution, and Bob is a learning algorithm. Suppose Alice use a fixed distribution <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mi mathvariant="normal">∣</mi><mi>y</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">p(x|y)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.75em;"></span><span class="strut bottom" style="height: 1em; vertical-align: -0.25em;"></span><span class="base"><span class="mord mathit">p</span><span class="mopen">(</span><span class="mord mathit">x</span><span class="mord mathrm">∣</span><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="mclose">)</span></span></span></span></span>, which might be inherently ambiguous. Bob has to learn <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>q</mi><mo>(</mo><mi>y</mi><mi mathvariant="normal">∣</mi><mi>x</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">q(y|x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.75em;"></span><span class="strut bottom" style="height: 1em; vertical-align: -0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right: 0.03588em;">q</span><span class="mopen">(</span><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="mord mathrm">∣</span><span class="mord mathit">x</span><span class="mclose">)</span></span></span></span></span> from samples. The regret is<br> | |
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mo>∑</mo><mi>t</mi></msub><mi>f</mi><mo>(</mo><msub><mi>y</mi><mi>t</mi></msub><mo separator="true">,</mo><msub><mi>x</mi><mi>t</mi></msub><mo separator="true">,</mo><msub><mi>q</mi><mi>t</mi></msub><mo>)</mo><mo>−</mo><msub><mo>∑</mo><mi>t</mi></msub><mi>f</mi><mo>(</mo><msub><mi>y</mi><mi>t</mi></msub><mo separator="true">,</mo><msub><mi>x</mi><mi>t</mi></msub><mo separator="true">,</mo><mi>q</mi><mo>)</mo></mrow><annotation encoding="application/x-tex"> | |
\sum_t f(y_t, x_t, q_t) - \sum_t f(y_t, x_t, q) | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 1.05001em;"></span><span class="strut bottom" style="height: 2.30001em; vertical-align: -1.25001em;"></span><span class="base"><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.05001em;"><span class="" style="top: -1.89999em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.05em;"><span class="pstrut" style="height: 3.05em;"></span><span class=""><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 1.25001em;"></span></span></span></span><span class="mord mathit" style="margin-right: 0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mpunct">,</span><span class="mord"><span class="mord mathit">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mpunct">,</span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mclose">)</span><span class="mbin">−</span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.05001em;"><span class="" style="top: -1.89999em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.05em;"><span class="pstrut" style="height: 3.05em;"></span><span class=""><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 1.25001em;"></span></span></span></span><span class="mord mathit" style="margin-right: 0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mpunct">,</span><span class="mord"><span class="mord mathit">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mpunct">,</span><span class="mord mathit" style="margin-right: 0.03588em;">q</span><span class="mclose">)</span></span></span></span></span></span></p> | |
<p>where the expected loss <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>f</mi><mo>(</mo><mi>q</mi><mo separator="true">,</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msub><mi>E</mi><mrow><msup><mi>y</mi><mo mathvariant="normal">′</mo></msup><msub><mo>∑</mo><mi>t</mi></msub><mi>f</mi><mo>(</mo><msub><mi>y</mi><mi>t</mi></msub><mo separator="true">,</mo><msub><mi>x</mi><mi>t</mi></msub><mo separator="true">,</mo><msub><mi>q</mi><mi>t</mi></msub><mo>)</mo><mo>−</mo><msub><mo>∑</mo><mi>t</mi></msub><mi>f</mi><mo>(</mo><msub><mi>y</mi><mi>t</mi></msub><mo separator="true">,</mo><msub><mi>x</mi><mi>t</mi></msub><mo separator="true">,</mo><msub><mi>q</mi><mi>t</mi></msub><mo>)</mo><mo>∼</mo><mi>q</mi><mo>(</mo><mo>⋅</mo><mi mathvariant="normal">∣</mi><mi>x</mi><mo>)</mo></mrow></msub><mo>[</mo><msub><mn>1</mn><mrow><mi>y</mi><mo>≠</mo><msup><mi>y</mi><mo mathvariant="normal">′</mo></msup></mrow></msub><mo>]</mo></mrow><annotation encoding="application/x-tex">f(q, x, y) = E_{y' \sum_t f(y_t, x_t, q_t) - \sum_t f(y_t, x_t, q_t)\sim q(\cdot|x)}[1_{y \neq y'}]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.75em;"></span><span class="strut bottom" style="height: 1.15521em; vertical-align: -0.405207em;"></span><span class="base"><span class="mord mathit" style="margin-right: 0.10764em;">f</span><span class="mopen">(</span><span class="mord mathit" style="margin-right: 0.03588em;">q</span><span class="mpunct">,</span><span class="mord mathit">x</span><span class="mpunct">,</span><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="mclose">)</span><span class="mrel">=</span><span class="mord"><span class="mord mathit" style="margin-right: 0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3448em;"><span class="" style="top: -2.5198em; margin-left: -0.05764em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.682829em;"><span class="" style="top: -2.786em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathrm mtight">′</span></span></span></span></span></span></span></span></span><span class="mop mtight"><span class="mop op-symbol small-op mtight" style="position: relative; top: -5e-06em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.117904em;"><span class="" style="top: -2.17856em; margin-left: 0em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.321439em;"></span></span></span></span></span><span class="mord mathit mtight" style="margin-right: 0.10764em;">f</span><span class="mopen mtight">(</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.296343em;"><span class="" style="top: -2.357em; margin-left: -0.03588em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"></span></span></span></span></span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mathit mtight">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.296343em;"><span class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"></span></span></span></span></span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.296343em;"><span class="" style="top: -2.357em; margin-left: -0.03588em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"></span></span></span></span></span><span class="mclose mtight">)</span><span class="mbin mtight">−</span><span class="mop mtight"><span class="mop op-symbol small-op mtight" style="position: relative; top: -5e-06em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.117904em;"><span class="" style="top: -2.17856em; margin-left: 0em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.321439em;"></span></span></span></span></span><span class="mord mathit mtight" style="margin-right: 0.10764em;">f</span><span class="mopen mtight">(</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.296343em;"><span class="" style="top: -2.357em; margin-left: -0.03588em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"></span></span></span></span></span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mathit mtight">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.296343em;"><span class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"></span></span></span></span></span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.296343em;"><span class="" style="top: -2.357em; margin-left: -0.03588em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"></span></span></span></span></span><span class="mclose mtight">)</span><span class="mrel mtight">∼</span><span class="mord mathit mtight" style="margin-right: 0.03588em;">q</span><span class="mopen mtight">(</span><span class="mord mtight">⋅</span><span class="mord mathrm mtight">∣</span><span class="mord mathit mtight">x</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.405207em;"></span></span></span></span></span><span class="mopen">[</span><span class="mord"><span class="mord mathrm">1</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3448em;"><span class="" style="top: -2.5436em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.03588em;">y</span><span class="mrel mtight">≠</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.682829em;"><span class="" style="top: -2.786em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathrm mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.3069em;"></span></span></span></span></span><span class="mclose">]</span></span></span></span></span>.<br> | |
Consider the method where Bob maintains an empirical estimate and play <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>y</mi><mo mathvariant="normal">′</mo></msup><mo>=</mo><mi>arg</mi><mo></mo><msub><mi>max</mi><mo></mo><mi>y</mi></msub><mover accent="true"><mrow><mi>q</mi></mrow><mo>^</mo></mover><mo>(</mo><mi>y</mi><mi mathvariant="normal">∣</mi><mi>x</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">y' = \arg\max_y\hat{q}(y|x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.751892em;"></span><span class="strut bottom" style="height: 1.038em; vertical-align: -0.286108em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.751892em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathrm mtight">′</span></span></span></span></span></span></span></span></span><span class="mrel">=</span><span class="mop">ar<span style="margin-right: 0.01389em;">g</span></span><span class="mop"><span class="mop">max</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.151392em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right: 0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"></span></span></span></span></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.69444em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">q</span></span></span><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="margin-left: 0.16668em;"><span class="">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.19444em;"></span></span></span></span><span class="mopen">(</span><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="mord mathrm">∣</span><span class="mord mathit">x</span><span class="mclose">)</span></span></span></span></span>, where<br> | |
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mover accent="true"><mrow><mi>q</mi></mrow><mo>^</mo></mover><mo>(</mo><mi>y</mi><mi mathvariant="normal">∣</mi><mi>x</mi><mo>)</mo><mo>=</mo><mfrac><mrow><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></munderover><mn>1</mn><mo>[</mo><mi>y</mi><mo>=</mo><msub><mi>y</mi><mi>i</mi></msub><mo>∧</mo><mi>x</mi><mo>=</mo><msub><mi>x</mi><mi>i</mi></msub><mo>]</mo></mrow><mrow><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></munderover><mn>1</mn><mo>[</mo><mi>x</mi><mo>=</mo><msub><mi>x</mi><mi>i</mi></msub><mo>]</mo></mrow></mfrac><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex"> | |
\hat{q}(y|x) = \frac{\sum_{i=1}^{t-1} 1[y=y_i \land x=x_i]}{\sum_{i=1}^{t-1} 1[x=x_i]}. | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 1.64372em;"></span><span class="strut bottom" style="height: 2.78744em; vertical-align: -1.14372em;"></span><span class="base"><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.69444em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">q</span></span></span><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="margin-left: 0.16668em;"><span class="">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.19444em;"></span></span></span></span><span class="mopen">(</span><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="mord mathrm">∣</span><span class="mord mathit">x</span><span class="mclose">)</span><span class="mrel">=</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.64372em;"><span class="" style="top: -2.15599em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position: relative; top: -5e-06em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.954008em;"><span class="" style="top: -2.40029em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mrel mtight">=</span><span class="mord mathrm mtight">1</span></span></span></span><span class="" style="top: -3.2029em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mathrm mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.29971em;"></span></span></span></span></span><span class="mord mathrm">1</span><span class="mopen">[</span><span class="mord mathit">x</span><span class="mrel">=</span><span class="mord"><span class="mord mathit">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mclose">]</span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line hide-tail" style="height: 0.04em;"><svg width="400em" height="400em" viewBox="0 0 400000 400000" preserveAspectRatio="xMinYMin slice"><path d="M0 0 h400000 v400000 h-400000z M0 0 h400000 v400000 h-400000z"></path></svg></span></span><span class="" style="top: -3.68971em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position: relative; top: -5e-06em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.954008em;"><span class="" style="top: -2.40029em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mrel mtight">=</span><span class="mord mathrm mtight">1</span></span></span></span><span class="" style="top: -3.2029em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mathrm mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.29971em;"></span></span></span></span></span><span class="mord mathrm">1</span><span class="mopen">[</span><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="mrel">=</span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mbin">∧</span><span class="mord mathit">x</span><span class="mrel">=</span><span class="mord"><span class="mord mathit">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mclose">]</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 1.14372em;"></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathrm">.</span></span></span></span></span></span></p> | |
<p>If Alice also adapts, meaning that Alice is allowed to play <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>p</mi><mi>t</mi></msub></mrow><annotation encoding="application/x-tex">p_t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.43056em;"></span><span class="strut bottom" style="height: 0.625em; vertical-align: -0.19444em;"></span><span class="base"><span class="mord"><span class="mord mathit">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span></span></span></span></span> in each round, and <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>x</mi><mi>t</mi></msub></mrow><annotation encoding="application/x-tex">x_t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.43056em;"></span><span class="strut bottom" style="height: 0.58056em; vertical-align: -0.15em;"></span><span class="base"><span class="mord"><span class="mord mathit">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span></span></span></span></span> is sampled according to <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>p</mi><mi>t</mi></msub></mrow><annotation encoding="application/x-tex">p_t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.43056em;"></span><span class="strut bottom" style="height: 0.625em; vertical-align: -0.19444em;"></span><span class="base"><span class="mord"><span class="mord mathit">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span></span></span></span></span>. Note that Alice is not allowed to communicate all of <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>p</mi><mi>t</mi></msub></mrow><annotation encoding="application/x-tex">p_t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.43056em;"></span><span class="strut bottom" style="height: 0.625em; vertical-align: -0.19444em;"></span><span class="base"><span class="mord"><span class="mord mathit">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span></span></span></span></span> to Bob, but merely a sample <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.43056em;"></span><span class="strut bottom" style="height: 0.43056em; vertical-align: 0em;"></span><span class="base"><span class="mord mathit">x</span></span></span></span></span>.<br> | |
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mo>∑</mo><mi>t</mi></msub><mi>f</mi><mo>(</mo><msub><mi>y</mi><mi>t</mi></msub><mo separator="true">,</mo><msub><mi>p</mi><mi>t</mi></msub><mo separator="true">,</mo><msub><mi>x</mi><mi>t</mi></msub><mo separator="true">,</mo><msub><mi>q</mi><mi>t</mi></msub><mo>)</mo><mo>−</mo><msub><mo>∑</mo><mi>t</mi></msub><mi>f</mi><mo>(</mo><msub><mi>y</mi><mi>t</mi></msub><mo separator="true">,</mo><mi>p</mi><mo separator="true">,</mo><msub><mi>x</mi><mi>t</mi></msub><mo separator="true">,</mo><mi>q</mi><mo>)</mo></mrow><annotation encoding="application/x-tex"> | |
\sum_t f(y_t, p_t, x_t, q_t) - \sum_t f(y_t, p, x_t, q) | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 1.05001em;"></span><span class="strut bottom" style="height: 2.30001em; vertical-align: -1.25001em;"></span><span class="base"><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.05001em;"><span class="" style="top: -1.89999em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.05em;"><span class="pstrut" style="height: 3.05em;"></span><span class=""><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 1.25001em;"></span></span></span></span><span class="mord mathit" style="margin-right: 0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mpunct">,</span><span class="mord"><span class="mord mathit">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mpunct">,</span><span class="mord"><span class="mord mathit">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mpunct">,</span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mclose">)</span><span class="mbin">−</span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.05001em;"><span class="" style="top: -1.89999em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.05em;"><span class="pstrut" style="height: 3.05em;"></span><span class=""><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 1.25001em;"></span></span></span></span><span class="mord mathit" style="margin-right: 0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mpunct">,</span><span class="mord mathit">p</span><span class="mpunct">,</span><span class="mord"><span class="mord mathit">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mpunct">,</span><span class="mord mathit" style="margin-right: 0.03588em;">q</span><span class="mclose">)</span></span></span></span></span></span></p> | |
<h2 id="structured-reference-game">Structured reference game</h2> | |
<p>The game starts with a probabilistic context free grammar <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.68333em;"></span><span class="strut bottom" style="height: 0.68333em; vertical-align: 0em;"></span><span class="base"><span class="mord mathit">G</span></span></span></span></span> known to Alice, but unknown to Bob. Suppose that <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.68333em;"></span><span class="strut bottom" style="height: 0.68333em; vertical-align: 0em;"></span><span class="base"><span class="mord mathit">G</span></span></span></span></span> is a semantic grammar where each rule has the form<br> | |
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>X</mi><mo>→</mo><msub><mi>Y</mi><mn>1</mn></msub><msub><mi>Y</mi><mn>2</mn></msub><mo>…</mo><msub><mi>Y</mi><mi>n</mi></msub><mo>:</mo><mi>λ</mi><msub><mi>y</mi><mn>1</mn></msub><msub><mi>y</mi><mn>2</mn></msub><mo>…</mo><msub><mi>y</mi><mi>n</mi></msub><mi mathvariant="normal">.</mi><mi>f</mi><mo>(</mo><msub><mi>y</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>y</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>y</mi><mi>n</mi></msub><mo>)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex"> | |
X \rightarrow Y_1 Y_2 \ldots Y_n : \lambda y_1 y_2 \ldots y_n. f(y_1, y_2, \ldots, y_n). | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.75em;"></span><span class="strut bottom" style="height: 1em; vertical-align: -0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right: 0.07847em;">X</span><span class="mrel">→</span><span class="mord"><span class="mord mathit" style="margin-right: 0.22222em;">Y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.301108em;"><span class="" style="top: -2.55em; margin-left: -0.22222em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathrm mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mord"><span class="mord mathit" style="margin-right: 0.22222em;">Y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.301108em;"><span class="" style="top: -2.55em; margin-left: -0.22222em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathrm mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="minner">…</span><span class="mord"><span class="mord mathit" style="margin-right: 0.22222em;">Y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.151392em;"><span class="" style="top: -2.55em; margin-left: -0.22222em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mrel">:</span><span class="mord mathit">λ</span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.301108em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathrm mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.301108em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathrm mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="minner">…</span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.151392em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mord mathrm">.</span><span class="mord mathit" style="margin-right: 0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.301108em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathrm mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mpunct">,</span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.301108em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathrm mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mpunct">,</span><span class="minner">…</span><span class="mpunct">,</span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.151392em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"></span></span></span></span></span><span class="mclose">)</span><span class="mord mathrm">.</span></span></span></span></span></span></p> | |
<ol> | |
<li>nature picks the semantics <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>y</mi><mo>∼</mo><mi>S</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">y \sim S(G)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.75em;"></span><span class="strut bottom" style="height: 1em; vertical-align: -0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="mrel">∼</span><span class="mord mathit" style="margin-right: 0.05764em;">S</span><span class="mopen">(</span><span class="mord mathit">G</span><span class="mclose">)</span></span></span></span></span></li> | |
<li>Alice produces <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.43056em;"></span><span class="strut bottom" style="height: 0.43056em; vertical-align: 0em;"></span><span class="base"><span class="mord mathit">x</span></span></span></span></span> given <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.43056em;"></span><span class="strut bottom" style="height: 0.625em; vertical-align: -0.19444em;"></span><span class="base"><span class="mord mathit" style="margin-right: 0.03588em;">y</span></span></span></span></span></li> | |
<li>Bob produces <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>y</mi><mo mathvariant="normal">′</mo></msup></mrow><annotation encoding="application/x-tex">y'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.751892em;"></span><span class="strut bottom" style="height: 0.946332em; vertical-align: -0.19444em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.751892em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathrm mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span> given <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.43056em;"></span><span class="strut bottom" style="height: 0.43056em; vertical-align: 0em;"></span><span class="base"><span class="mord mathit">x</span></span></span></span></span></li> | |
<li>Receive reward if <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>y</mi><mo>=</mo><msup><mi>y</mi><mo mathvariant="normal">′</mo></msup></mrow><annotation encoding="application/x-tex">y=y'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.751892em;"></span><span class="strut bottom" style="height: 0.946332em; vertical-align: -0.19444em;"></span><span class="base"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="mrel">=</span><span class="mord"><span class="mord mathit" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.751892em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathrm mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span>, Bob and Alice learn.</li> | |
</ol> | |
<p>We use this as a model of human/computer communication, where Bob plays the role of a computer system, and Alice the human user.<br> | |
Alice does not know <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.68333em;"></span><span class="strut bottom" style="height: 0.68333em; vertical-align: 0em;"></span><span class="base"><span class="mord mathit">G</span></span></span></span></span>, and thus does not know how to interpret <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.43056em;"></span><span class="strut bottom" style="height: 0.625em; vertical-align: -0.19444em;"></span><span class="base"><span class="mord mathit" style="margin-right: 0.03588em;">y</span></span></span></span></span>. On the other hand, Bob knows <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.68333em;"></span><span class="strut bottom" style="height: 0.68333em; vertical-align: 0em;"></span><span class="base"><span class="mord mathit">G</span></span></span></span></span> but does not know how to interpret <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height: 0.43056em;"></span><span class="strut bottom" style="height: 0.43056em; vertical-align: 0em;"></span><span class="base"><span class="mord mathit">x</span></span></span></span></span>.</p> | |
<h3 id="adaptation">Adaptation</h3> | |
<p>The static approach is to consider natural language as fixed and universal. This fixed language (such as English) is already capable of expressing any meanings. To communicate between the human and computer, the computer has to understand this existing language, and map it to its own action space.</p> | |
<p>Whenever the subject matter is outside of daily life, insisting on standard English can quickly become untenable:</p> | |
<blockquote> | |
<p>In right-angled triangles the square on the side subtending the right<br> | |
angle is equal to the squares on the sides containing the right angle</p> | |
</blockquote> | |
<p>In math and computer science, communication systems like formulas and programming languages are required to refer to new concepts and achieve the desired amount of precision.<br> | |
In most areas, some adaptation to the domain is required to achieve efficient communication, which results in domain specific concepts and conventions glued together by natural language. Some examples:</p> | |
<blockquote> | |
<p>Alice knows a clique C in the graph, and Bob knows an independent set I in the graph. They want to know whether C and I share a common vertex or not.</p> | |
</blockquote> | |
<blockquote> | |
<p>I picked up a charge as well, a couple of blocks, a couple of steals, just being around the court and reliable for my teammates. Being able to clean glass, get my guys good looks where they are able to catch and shoot or catch it and lay it up, makes it a lot easier for me.</p> | |
</blockquote> | |
<blockquote> | |
<p>A grammar can be regarded as a device that enumerates the sentences of a language. We study a sequence of restrictions that limit grammars first to Turing machines, then to two types of system from which a phrase structure description of the generated language can be drawn, and finally to finite state Markov sources (finite automata).</p> | |
</blockquote> | |
<blockquote> | |
<p>Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage.</p> | |
</blockquote> | |
<p>Perhaps the goal of communicating with computers in natural English is misguided as long as the grounding of the language is different from natural English.</p> | |
<h3 id="language">Language</h3> | |
</body> | |
<script type="text/javascript" | |
src="https://stackedit.io/libs/MathJax/MathJax.js?config=TeXAMS_HTML"></script> | |
</html> | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment