Created
November 26, 2010 09:49
-
-
Save siedentop/716477 to your computer and use it in GitHub Desktop.
hermite.m % Using a better approach to recursion
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
classdef hermite | |
% Hermite class for hermite functions | |
properties | |
x | |
polynomes | |
hermites | |
end | |
methods | |
function self = hermite(x, n) | |
self.x = x; | |
self.polynomes = {}; | |
self.hermites = {}; | |
for i = 0:n | |
self.calc_polynomes(i); | |
end | |
end | |
function calc_polynomes(self, n) %, (SetAccess = private) | |
% calculates the Hermite polynomial, as given by the notes on page 24. | |
% Relies on n-1 already having been calculated! | |
if n == 0 | |
h_poly = [1]; | |
elseif n == 1 | |
h_poly = [2 0]; | |
else | |
% Split in two, so that h(n-2) can be evaluated first! | |
part2 = -2 * (n-1) * self.h(n-2); | |
part1 = 2 .* [self.h(n-1) 0]; % 2 * H_n-1 * x | |
h_poly = polyadd(part1, part2); % Recursive definition | |
end | |
self.set(polynomes{n+1}, h_poly); | |
end | |
function h_poly = h(self, n) | |
% Returns the n-th hermite polynomial | |
h_poly = self.polynomes{n+1}; | |
end | |
function h = get(self, n) | |
% Returns the nth Hermite function | |
try self.hermites(n+1) | |
catch | |
% Use given formula for hermite function. Notes p. 24. | |
val = 1/sqrt(factorial(n)*2^n*sqrt(pi)) * exp(-self.x.^2/2) .* polyval(self.h(n), self.x); | |
self.hermites{n+1} = val; | |
end | |
h = self.hermites{n+1}; | |
end | |
end | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment