Created
May 2, 2015 07:30
-
-
Save sigorilla/7861b8072a852f6c4285 to your computer and use it in GitHub Desktop.
Poisson Equation Solution
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from math import sqrt, fabs, ceil | |
import matplotlib.pyplot as plt | |
from matplotlib.ticker import MaxNLocator | |
import numpy as np | |
class PoissonEquation(object): | |
def __init__(self, step=0.1): | |
try: | |
self.step = float(step) | |
except Exception: | |
self.step = 0.1 | |
self.eps = self.step | |
self.count_iterations = 0 | |
self.length_x = 1 | |
self.length_y = self.length_x | |
self.size_x = ceil(self.length_x / self.step) | |
self.size_y = ceil(self.length_y / self.step) | |
self.curr_u = [[0 for x in range(self.size_y)] | |
for x in range(self.size_x)] | |
self.prev_u = self.curr_u.copy() | |
def f(self, i=0, j=0): | |
x = i * self.step | |
y = j * self.step | |
return 2 * (x * x + y * y) - 2 * (x + y) | |
@property | |
def get_max_norm(self): | |
_maxNorm = 0.0 | |
for i in range(self.size_y): | |
for j in range(self.size_x): | |
_maxNorm += fabs(self.curr_u[i][j] * self.curr_u[i][j]) | |
return sqrt(_maxNorm) | |
def run(self): | |
max_norm = 0.0 | |
self.count_iterations = 0 | |
while (fabs(max_norm - self.get_max_norm) > self.eps or | |
self.count_iterations == 0): | |
self.prev_u = self.curr_u.copy() | |
for i in range(1, self.size_y - 1): | |
for j in range(1, self.size_x - 1): | |
self.curr_u[i][j] = (self.prev_u[i - 1][j] + | |
self.prev_u[i + 1][j] + | |
self.prev_u[i][j - 1] + | |
self.prev_u[i][j + 1] - | |
self.step * self.step * self.f(i, j) | |
) / 4 | |
self.count_iterations += 1 | |
max_norm = self.get_max_norm | |
return self.count_iterations | |
def print_u(self): | |
print('\n'.join([' '.join(['{:4}'.format(item) for item in row]) | |
for row in self.curr_u])) | |
def save_u(self, filename='data.txt'): | |
file = open(filename, 'w+') | |
for row in self.curr_u: | |
file.write(' '.join(str(item) for item in row) + '\n') | |
file.close() | |
print('Data was written to file `%s`.' % filename) | |
def plot_u(self): | |
if self.step < 0.001: | |
print('Graph will not be built. There will be saved to `data.txt`.') | |
self.save_u() | |
return | |
X = np.arange(0, self.length_x, self.step) | |
Y = np.arange(0, self.length_y, self.step) | |
X, Y = np.meshgrid(X, Y) | |
Z = np.array(self.curr_u) | |
levels = MaxNLocator(nbins=15).tick_values(Z.min(), Z.max()) | |
cmap = plt.get_cmap('PiYG') | |
plt.contourf(X, Y, Z, levels=levels, cmap=cmap) | |
plt.colorbar() | |
plt.title('Poisson Equation Solution (h = %.4f)' % self.step) | |
plt.xlabel('X') | |
plt.ylabel('Y') | |
plt.show() | |
print('Graph was built.') | |
def main(): | |
step = input('Please, choose step for this method (by default: 0.1): ') | |
poissonEquation = PoissonEquation(step=step) | |
print('Count of iterations:', poissonEquation.run()) | |
print('Step:', poissonEquation.step) | |
poissonEquation.plot_u() | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment