Last active
October 5, 2024 12:56
-
-
Save silgon/24b56f8ae857ff4ab397 to your computer and use it in GitHub Desktop.
Python curve_fit function with 2d data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# curvefit with non linear least squares (curve_fit function) | |
import numpy as np | |
from scipy.optimize import curve_fit | |
def func(x, a, b, c): | |
return a*np.sin(x[0])+b*np.cos(x[1])+c | |
limits = [0, 2*np.pi, 0, 2*np.pi] # [x1_min, x1_max, x2_min, x2_max] | |
side_x = np.linspace(limits[0], limits[1], 100) | |
side_y = np.linspace(limits[2], limits[3], 100) | |
X1, X2 = np.meshgrid(side_x, side_y) | |
size = X1.shape | |
x1_1d = X1.reshape((1, np.prod(size))) | |
x2_1d = X2.reshape((1, np.prod(size))) | |
xdata = np.vstack((x1_1d, x2_1d)) | |
original = (3, 1, 0.5) | |
z = func(xdata, *original) | |
Z = z.reshape(size) | |
z_noise = z + .2*np.random.randn(len(z)) | |
Z_noise = z_noise.reshape(size) | |
ydata = z_noise | |
popt, pcov = curve_fit(func, xdata, ydata) | |
print("original: {}\nfitted: {}".format(original, popt)) | |
z_fit = func(xdata, *popt) | |
Z_fit = z_fit.reshape(size) | |
import matplotlib.pyplot as plt | |
plt.subplot(1, 3, 1) | |
plt.title("Real Function") | |
plt.pcolormesh(X1, X2, Z) | |
plt.axis(limits) | |
plt.colorbar() | |
plt.subplot(1, 3, 2) | |
plt.title("Function w/ Noise") | |
plt.pcolormesh(X1, X2, Z_noise) | |
plt.axis(limits) | |
plt.colorbar() | |
plt.subplot(1, 3, 3) | |
plt.title("Fitted Function from Noisy One") | |
plt.pcolormesh(X1, X2, Z_fit) | |
plt.axis(limits) | |
plt.colorbar() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This is how the result looks like: