Skip to content

Instantly share code, notes, and snippets.

@simnalamburt
Last active October 5, 2016 10:15
Show Gist options
  • Save simnalamburt/f8355b0ebf5cc60083d6285fcce651fb to your computer and use it in GitHub Desktop.
Save simnalamburt/f8355b0ebf5cc60083d6285fcce651fb to your computer and use it in GitHub Desktop.

적분 재활훈련

재활훈련 하고있는데 이게 맞게하는건지 모르겠습니다. 리뷰 부탁드려요 ㅠㅠ

이미지를 복사하시면 수식의 LaTeX 코드가 복사됩니다.

1. 문제가 복기 안되서 못품

2. 과연 이렇게 푸는게 맞을까?

 \int x^2 \sqrt{3-x} \sqrt{1+x} dx \=\int x^2 \sqrt{-x^2 + 2x + 3} dx \=\int x^2 \sqrt{4 - {(x-1)}^2} dx \=\int {(u+1)}^2 \sqrt{4 - u^2} du \qquad (x=u+1) \=4 \int {(2 sin(t) + 1))}^2 cos^2(t) dt \qquad (u=2sin(t))) \=4 \int {(2 sin(t) + 1))}^2 (1 - sin^2(t)) dt \=4 \int (-4sin^4(t) - 4sin^3(t) + 3sin^2(t) + 4sin(t) + 1) dt \= - 16 \int sin^4(t)dt - 16 \int sin^3(t)dt + 12 \int sin^2(t)dt + 16 \int sin(t)dt + 4 \int dt \= \frac{-12t + 8sin(2t) - sin(4t)}{2} - 16 \cdot \frac{cos(3t) - 9cos(t)}{12} + 12 \cdot \frac{t - sin(t)cos(t)}{2} - 16cos(t) + 4t \= \frac1{12} \sqrt{4-u^2} (-32+8 u^2+3 u^3)+4 sin^{-1}(\frac{u}2)

3. 쌍곡함수를 사용한 적분

 \int \frac{ \sqrt {1 + \sqrt{x}} }{x} dx \= 2 \int \frac{ \sqrt {1 + t} }{t} dt \qquad (t = \sqrt x) \= 2 \int \frac{ tanh(k) }{-sech^2(k)} \cdot (2 tanh(k) sech^2(k)) dk \qquad (t = tanh^2(k) - 1 = -sech^2(k)) \= -4 \int tanh^2(k)dk \= 4 \int sech^2(k)dk - 4 \int dk \= 4 tanh(k) - 4k \= 4 \sqrt { tanh^2(k) } - 4k \= 4 \sqrt { t + 1 } - 4 tanh^{-1}(\sqrt{t+1}) \qquad (\sqrt{t+1} = tanh(k)) \= 4 \sqrt { \sqrt x + 1 } - 4 tanh^{-1}(\sqrt{\sqrt x+1})

4. 아직 안품

 \int_{1}^{\sqrt 3} \frac{2x+4}{(x+1)^2(x^2+1)} dx

5. 아직 안품

 \int_{-2}^{2} \left [\frac{1}{x^2+4} + x^2\textup{tan}(\frac{\pi x}{8}) + \frac{\textup{sin}x}{\sqrt{1+x^2}}  \right ]dx

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment