Last active
October 23, 2024 18:05
-
-
Save simon-anders/1c0626b7815f1b6255e9f1f8fabe94ee to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library( rstan ) | |
options(mc.cores=6) | |
n <- 1000 | |
s <- round( 10^rnorm( n, 3, .5 ) ) | |
fracs <- 10^ifelse( runif(n)<.7, rnorm( n, -3.3, .4 ), rnorm( n, -1.7, .2 ) ) | |
k <- rpois( n, fracs*s ) | |
model <- stan_model( model_code=" | |
data { | |
int<lower=1> n; | |
int<lower=1> ncomp; | |
array[ncomp] real nbsize; | |
array[n] int k; | |
array[n] int s; | |
array[ncomp] real lambda; | |
} | |
parameters { | |
simplex[ncomp] theta; | |
} | |
model { | |
vector[ncomp] log_theta = log(theta); | |
for( i in 1:n ) { | |
vector[ncomp] lps = log_theta; | |
for( j in 1:ncomp ) { | |
lps[j] += neg_binomial_lpmf( k[i] | nbsize[j], nbsize[j] / ( lambda[j] * s[i] ) ); | |
} | |
target += log_sum_exp(lps); | |
} | |
} | |
") | |
stepsize <- .3 | |
lambda <- 10^seq( -5, 0, by=stepsize ) | |
alpha <- .5*stepsize*lambda # scale parameter | |
fit <- sampling( model, data=list( n=n, ncomp=length(lambda), nbsize=1/alpha, k=k, s=s, lambda=lambda ), iter=500 ) | |
# Original fractions: | |
hist( log10(fracs), 100, freq=FALSE ) | |
# Histogram of log-counts | |
hist( log10(k/s + 1e-4 ), 100, freq=FALSE ) | |
# Original fractions again: | |
hist( log10(fracs), 100, freq=FALSE ) | |
# Reconstruction of fractions density from counts | |
lines( log10(lambda), summary(fit)$summary[1:length(lambda),"mean"] / stepsize ) | |
xg <- seq( -6, 0, length.out=1000 ) | |
lines( xg, | |
sapply( 1:length(lambda), function(i) | |
dgamma( 10^xg, shape=lambda[i]/alpha[i], scale=alpha[i] )*(10^xg)*log(10) ) %*% | |
summary(fit)$summary[1:length(lambda),"mean"], col="red" ) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment