Created
March 11, 2020 13:40
-
-
Save simon-anders/a62ade566e977074f6869aacf7d5b25e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library( tidyverse ) | |
library( ggplot2 ) | |
jhu_url <- paste("https://raw.githubusercontent.com/CSSEGISandData/", | |
"COVID-19/master/csse_covid_19_data/", "csse_covid_19_time_series/", | |
"time_series_19-covid-Confirmed.csv", sep = "") | |
seq( 0, by=.211, length.out=300 ) -> a | |
hsv( a - floor(a), 1, 1 ) -> palette | |
tibble( | |
startdate = seq( as.Date("2020-02-01"), as.Date(Sys.time())+7, by=7 ), | |
startcount = 10 ) %>% | |
mutate( enddate = max(a$date) ) %>% | |
mutate( endcount = ( 10 ^ (as.integer(enddate-startdate)/7) ) * startcount ) %>% | |
mutate( idx = row_number() ) -> aa | |
bind_rows( | |
aa %>% select( idx, date=startdate, count=startcount ), | |
aa %>% select( idx, date=enddate, count=endcount ) ) -> slopelines | |
read_csv(jhu_url) %>% | |
select( -`Province/State`, -Lat, -Long ) %>% | |
gather( date, count, -`Country/Region` ) %>% | |
rename( region = `Country/Region` ) %>% | |
mutate_at( "date", as.Date, "%m/%d/%y" ) %>% | |
group_by( region, date ) %>% | |
summarise_at( "count", sum ) %>% | |
filter( count>0, max(count) > 100 ) %>% | |
ungroup -> a | |
a %>% filter( date==max(date) ) %>% arrange(count) -> b | |
(a %>% mutate_at( "region", factor, levels=rev(b$region) ) %>% | |
ggplot( aes( x=date, y=count ) ) + | |
geom_line( aes( col=region ) ) + | |
scale_y_log10( limits=c(.1,1e7) ) + | |
scale_color_manual( values=palette ) + | |
ylab( "number of cases" ) + | |
ggtitle( "COVID-19 (visualization of statistics collected by JHU CSSE)" ) ) + | |
geom_line( aes( group=idx ), col="gray", data = slopelines ) + | |
xlim( min(a$date), max(a$date)+7 ) #%>% | |
plotly::ggplotly() #%>% | |
htmlwidgets::saveWidget( "covid.html", selfcontained = FALSE, title="COVID19 cases" ) | |
a %>% group_by( region ) %>% | |
do( broom::tidy( coef( glm( count ~ date, data = ., family=poisson() ) ) ) ) %>% | |
spread( names, x ) -> b | |
a %>% | |
left_join( b, by="region" ) %>% | |
mutate( date_shifted = date.x + `(Intercept)` ) %>% | |
ggplot() + | |
geom_line( aes( x=date_shifted, y=count, col=region ) ) + | |
scale_y_log10() + | |
scale_color_manual( values=palette ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment