Created
March 7, 2018 09:19
-
-
Save simoninithomas/c32e5109d1ff836fe164c8b0093788e3 to your computer and use it in GitHub Desktop.
Cat DCGAN
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def generator(z, output_channel_dim, is_train=True): | |
''' Build the generator network. | |
Arguments | |
--------- | |
z : Input tensor for the generator | |
output_channel_dim : Shape of the generator output | |
n_units : Number of units in hidden layer | |
reuse : Reuse the variables with tf.variable_scope | |
alpha : leak parameter for leaky ReLU | |
Returns | |
------- | |
out: | |
''' | |
with tf.variable_scope("generator", reuse= not is_train): | |
# First FC layer --> 8x8x1024 | |
fc1 = tf.layers.dense(z, 8*8*1024) | |
# Reshape it | |
fc1 = tf.reshape(fc1, (-1, 8, 8, 1024)) | |
# Leaky ReLU | |
fc1 = tf.nn.leaky_relu(fc1, alpha=alpha) | |
# Transposed conv 1 --> BatchNorm --> LeakyReLU | |
# 8x8x1024 --> 16x16x512 | |
trans_conv1 = tf.layers.conv2d_transpose(inputs = fc1, | |
filters = 512, | |
kernel_size = [5,5], | |
strides = [2,2], | |
padding = "SAME", | |
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), | |
name="trans_conv1") | |
batch_trans_conv1 = tf.layers.batch_normalization(inputs = trans_conv1, training=is_train, epsilon=1e-5, name="batch_trans_conv1") | |
trans_conv1_out = tf.nn.leaky_relu(batch_trans_conv1, alpha=alpha, name="trans_conv1_out") | |
# Transposed conv 2 --> BatchNorm --> LeakyReLU | |
# 16x16x512 --> 32x32x256 | |
trans_conv2 = tf.layers.conv2d_transpose(inputs = trans_conv1_out, | |
filters = 256, | |
kernel_size = [5,5], | |
strides = [2,2], | |
padding = "SAME", | |
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), | |
name="trans_conv2") | |
batch_trans_conv2 = tf.layers.batch_normalization(inputs = trans_conv2, training=is_train, epsilon=1e-5, name="batch_trans_conv2") | |
trans_conv2_out = tf.nn.leaky_relu(batch_trans_conv2, alpha=alpha, name="trans_conv2_out") | |
# Transposed conv 3 --> BatchNorm --> LeakyReLU | |
# 32x32x256 --> 64x64x128 | |
trans_conv3 = tf.layers.conv2d_transpose(inputs = trans_conv2_out, | |
filters = 128, | |
kernel_size = [5,5], | |
strides = [2,2], | |
padding = "SAME", | |
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), | |
name="trans_conv3") | |
batch_trans_conv3 = tf.layers.batch_normalization(inputs = trans_conv3, training=is_train, epsilon=1e-5, name="batch_trans_conv3") | |
trans_conv3_out = tf.nn.leaky_relu(batch_trans_conv3, alpha=alpha, name="trans_conv3_out") | |
# Transposed conv 4 --> BatchNorm --> LeakyReLU | |
# 64x64x128 --> 128x128x64 | |
trans_conv4 = tf.layers.conv2d_transpose(inputs = trans_conv3_out, | |
filters = 64, | |
kernel_size = [5,5], | |
strides = [2,2], | |
padding = "SAME", | |
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), | |
name="trans_conv4") | |
batch_trans_conv4 = tf.layers.batch_normalization(inputs = trans_conv4, training=is_train, epsilon=1e-5, name="batch_trans_conv4") | |
trans_conv4_out = tf.nn.leaky_relu(batch_trans_conv4, alpha=alpha, name="trans_conv4_out") | |
# Transposed conv 5 --> tanh | |
# 128x128x64 --> 128x128x3 | |
logits = tf.layers.conv2d_transpose(inputs = trans_conv4_out, | |
filters = 3, | |
kernel_size = [5,5], | |
strides = [1,1], | |
padding = "SAME", | |
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), | |
name="logits") | |
out = tf.tanh(logits, name="out") | |
return out |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment