Created
March 7, 2018 09:18
-
-
Save simoninithomas/f7864eaf8f32c2b907a70c95a1b82319 to your computer and use it in GitHub Desktop.
Cat DCGAN
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def discriminator(x, is_reuse=False, alpha = 0.2): | |
''' Build the discriminator network. | |
Arguments | |
--------- | |
x : Input tensor for the discriminator | |
n_units: Number of units in hidden layer | |
reuse : Reuse the variables with tf.variable_scope | |
alpha : leak parameter for leaky ReLU | |
Returns | |
------- | |
out, logits: | |
''' | |
with tf.variable_scope("discriminator", reuse = is_reuse): | |
# Input layer 128*128*3 --> 64x64x64 | |
# Conv --> BatchNorm --> LeakyReLU | |
conv1 = tf.layers.conv2d(inputs = x, | |
filters = 64, | |
kernel_size = [5,5], | |
strides = [2,2], | |
padding = "SAME", | |
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), | |
name='conv1') | |
batch_norm1 = tf.layers.batch_normalization(conv1, | |
training = True, | |
epsilon = 1e-5, | |
name = 'batch_norm1') | |
conv1_out = tf.nn.leaky_relu(batch_norm1, alpha=alpha, name="conv1_out") | |
# 64x64x64--> 32x32x128 | |
# Conv --> BatchNorm --> LeakyReLU | |
conv2 = tf.layers.conv2d(inputs = conv1_out, | |
filters = 128, | |
kernel_size = [5, 5], | |
strides = [2, 2], | |
padding = "SAME", | |
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), | |
name='conv2') | |
batch_norm2 = tf.layers.batch_normalization(conv2, | |
training = True, | |
epsilon = 1e-5, | |
name = 'batch_norm2') | |
conv2_out = tf.nn.leaky_relu(batch_norm2, alpha=alpha, name="conv2_out") | |
# 32x32x128 --> 16x16x256 | |
# Conv --> BatchNorm --> LeakyReLU | |
conv3 = tf.layers.conv2d(inputs = conv2_out, | |
filters = 256, | |
kernel_size = [5, 5], | |
strides = [2, 2], | |
padding = "SAME", | |
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), | |
name='conv3') | |
batch_norm3 = tf.layers.batch_normalization(conv3, | |
training = True, | |
epsilon = 1e-5, | |
name = 'batch_norm3') | |
conv3_out = tf.nn.leaky_relu(batch_norm3, alpha=alpha, name="conv3_out") | |
# 16x16x256 --> 16x16x512 | |
# Conv --> BatchNorm --> LeakyReLU | |
conv4 = tf.layers.conv2d(inputs = conv3_out, | |
filters = 512, | |
kernel_size = [5, 5], | |
strides = [1, 1], | |
padding = "SAME", | |
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), | |
name='conv4') | |
batch_norm4 = tf.layers.batch_normalization(conv4, | |
training = True, | |
epsilon = 1e-5, | |
name = 'batch_norm4') | |
conv4_out = tf.nn.leaky_relu(batch_norm4, alpha=alpha, name="conv4_out") | |
# 16x16x512 --> 8x8x1024 | |
# Conv --> BatchNorm --> LeakyReLU | |
conv5 = tf.layers.conv2d(inputs = conv4_out, | |
filters = 1024, | |
kernel_size = [5, 5], | |
strides = [2, 2], | |
padding = "SAME", | |
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), | |
name='conv5') | |
batch_norm5 = tf.layers.batch_normalization(conv5, | |
training = True, | |
epsilon = 1e-5, | |
name = 'batch_norm5') | |
conv5_out = tf.nn.leaky_relu(batch_norm5, alpha=alpha, name="conv5_out") | |
# Flatten it | |
flatten = tf.reshape(conv5_out, (-1, 8*8*1024)) | |
# Logits | |
logits = tf.layers.dense(inputs = flatten, | |
units = 1, | |
activation = None) | |
out = tf.sigmoid(logits) | |
return out, logits |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment