Created
March 22, 2020 08:18
-
-
Save simonjisu/57c6e2b89b4c9457541809ec5b5f51c9 to your computer and use it in GitHub Desktop.
prml excercise 1.4 code
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
def g(y): | |
"""x = g(y)""" | |
return np.log(y) - np.log(1-y) + 5 | |
def g_inv(x): | |
"""y = g^{-1}(x)""" | |
return 1 / (1 + np.exp(-x + 5)) | |
def gaussian(x, mu, sigma): | |
"""p(x)""" | |
return (1/sigma*np.sqrt(2*np.pi)) * np.exp((-1/2)*((x-mu)/sigma)**2) | |
def dxdy(y): | |
return 1 / (y - y**2) | |
def scaler(x): | |
"""for drawing""" | |
x_max = x.max() | |
x_min = x.min() | |
return (x - x_min) / (x_max - x_min) | |
# vairable | |
np.random.seed(88) | |
N = 50000 | |
mu = 6.0 | |
sigma = 1.0 | |
sampled_x = np.random.normal(loc=mu, scale=sigma, size=(N,)) | |
sampled_y = g_inv(sampled_x) | |
x = np.linspace(0, 10, N) | |
y = g_inv(x) | |
px = gaussian(x, mu, sigma) | |
py = gaussian(g(y), mu, sigma) | |
py_real = px * np.abs(dxdy(y)) | |
# drawing | |
fig, ax= plt.subplots(1, 1, figsize=(8, 6)) | |
n, bins, patches = ax.hist(sampled_x, bins=50, alpha=0.8) | |
p_bins = np.array([p.get_height() for p in patches]) | |
p_bins_normed = 0.5*scaler(p_bins) | |
for i, p in enumerate(patches): | |
p.set_height(p_bins_normed[i]) | |
px_normed = 0.5*scaler(px) # normalize to 0~.5 | |
ax.plot(x, px_normed, c="r", label="$p_x(x)$") | |
ax.plot(x, g_inv(x), c="g", label="$g^{-1}(x)$") | |
ax.set_ylim(0, 1) | |
ax.set_xlim(0, 10) | |
ax2 = ax.twiny() | |
n, bins, patches = ax2.hist(sampled_y, bins=50, alpha=0.8, orientation="horizontal") | |
p_bins = np.array([p.get_width() for p in patches]) | |
p_bins_normed = scaler(p_bins) | |
for i, p in enumerate(patches): | |
p.set_width(p_bins_normed[i]) | |
py_normed = scaler(py) | |
ax2.set_xlim(0, 2) | |
ax2.plot(py_normed, y, label="$p_x(g(y))$", c="orange") | |
py_real_normed = scaler(py_real) | |
yy = np.linspace(0, 1, len(p_bins_normed)) | |
ax2.plot(py_real_normed, y, c="b", label="$p_x(g(y)) | \dfrac{dx}{dy} | $") | |
ax2.legend(loc=3) | |
ax.legend(loc=1) | |
ax.set_xlabel("$x$") | |
ax.set_ylabel("$y$", rotation=0) | |
ax.annotate("$p_y(y)$", (5.2, 0.9), fontsize=14, c="b") | |
ax.annotate("$p_x(x)$", (7.2, 0.35), fontsize=14, c="r") | |
ax.scatter(mu, px_normed.max(), c="r") | |
ax.scatter(mu, g_inv(mu), c="k") | |
ax.plot((mu, mu), (px_normed.max(), y[py_normed.argmax()]), "k--") | |
ax.plot((5, mu), (y[py_normed.argmax()], y[py_normed.argmax()]), "k--") | |
ax2.scatter(py_normed.max(), y[py_normed.argmax()], c="orange") | |
ax2.scatter(py_real_normed.max(), y[py_real_normed.argmax()], c="b") | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment