-
-
Save simonw/7000493 to your computer and use it in GitHub Desktop.
import json, datetime | |
class RoundTripEncoder(json.JSONEncoder): | |
DATE_FORMAT = "%Y-%m-%d" | |
TIME_FORMAT = "%H:%M:%S" | |
def default(self, obj): | |
if isinstance(obj, datetime.datetime): | |
return { | |
"_type": "datetime", | |
"value": obj.strftime("%s %s" % ( | |
self.DATE_FORMAT, self.TIME_FORMAT | |
)) | |
} | |
return super(RoundTripEncoder, self).default(obj) | |
data = { | |
"name": "Silent Bob", | |
"dt": datetime.datetime(2013, 11, 11, 10, 40, 32) | |
} | |
print json.dumps(data, cls=RoundTripEncoder, indent=2) | |
import json, datetime | |
from dateutil import parser | |
class RoundTripDecoder(json.JSONDecoder): | |
def __init__(self, *args, **kwargs): | |
json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs) | |
def object_hook(self, obj): | |
if '_type' not in obj: | |
return obj | |
type = obj['_type'] | |
if type == 'datetime': | |
return parser.parse(obj['value']) | |
return obj | |
print json.loads(s, cls=RoundTripDecoder) | |
@simonw Awesome example, for which thanks. Does the custom decoder operate recursively over the whole JSON tree, or only on the top level?
@simonw Awesome example, for which thanks. Does the custom decoder operate recursively over the whole JSON tree, or only on the top level?
Recursively
@raph92 it acts recursively. This is my implementation.
INPUT
`class MainDecoder(json.JSONDecoder):
date_time_map = {'date', 'datetime', 'day', 'hour', 'minutes', 'month', 'seconds', 'time', 'year'}
num_type_data = {'fraction', 'decimal', 'complex'}
def __init__(self, *args, **kwargs):
super().__init__(object_hook=self.object_hook,strict=False, *args, **kwargs)
def object_hook(self, obj):
if '_type' not in obj:
return obj
get_type = obj['_type']
if get_type in self.date_time_map: # check if _type is a datetime type
obj['value'] = self.date_deserialize(obj['value'], get_type)
elif get_type in self.num_type_data: # Checks for fractions, decimal and complex
try:
obj['value'] = self.eva_data(obj['value'])
except ValueError as err:
print('object_hook ---> in num_type_data eval', err)
elif get_type == '_set':
obj['value'] = set(obj['value'])
return obj
@staticmethod
def eva_data(obj):
"""Eval fractions, Decimals and complex num types"""
return eval(obj)
@staticmethod
def date_deserialize(obj, _type):
# TODO deserialize date with other format types, for instance 2020/11/17
if _type == 'date':
try:
if isinstance(obj, list): # Date can be [2020, 11, 17] or '2020-11-17)
obj = date(*[int(item) for item in obj])
else:
obj = date(*[int(item) for item in obj.split('-')])
except ValueError as err:
print('data_serialize -- data', err)
elif _type == 'datetime':
try:
obj = datetime.strptime(str(obj), '%Y-%m-%d %H:%M:%S')
except ValueError as err:
try:
obj = datetime.fromisoformat(str(obj))
except ValueError as err:
print('data_serialize -- datatime', err)
return obj`
JSON
`json_schema_ok = '''
{
"decimal": {
"_type": "decimal",
"value": "Decimal(1.5)",
"required": null
},
"fraction": {
"_type": "fraction",
"value": "Fraction(1, 2)",
"required": null
},
"complex": {
"_type": "complex",
"value": "complex(2+2j)",
"required": null
},
"datetime": {
"_type": "datetime",
"value": "2020-11-18T04:13:07.947272",
"required": true
},
"date": {
"_type": "date",
"value": [
3020,
11,
17
],
"required": null
},
"_set": {
"_type": "_set",
"value": [
1,
2,
3
],
"required": null
}
}
'''`
OUTPUT
`schema_output_1 = {'decimal': {'_type': 'decimal', 'value': Decimal('1.5'), 'required': None},
'fraction': {'_type': 'fraction', 'value': Fraction(1, 2), 'required': None},
'complex': {'_type': 'complex', 'value': (2+2j), 'required': None},
'datetime': {'_type': 'datetime', 'value': datetime.datetime(2020, 11, 18, 4, 13, 7, 947272), 'required': True},
'date': {'_type': 'date', 'value': datetime.date(3020, 11, 17), 'required': None},
'_set': {'_type': '_set', 'value': {1, 2, 3}, 'required': None}}`
@Timokasse @simonw I think it is simpler than that, unless I am misunderstanding.
>>> import json
>>> import datetime
>>> data = {
... "name": "Silent Bob",
... "dt": datetime.datetime(2013, 11, 11, 10, 40, 32)
... }
# Fails as expected
>>> json.dumps(data)
TypeError: Object of type datetime is not JSON serializable
# Succeeds
>>> json.dumps(data, default=str)
'{"name": "Silent Bob", "dt": "2013-11-11 10:40:32"}'
@andelink Oh great type for the encoder part. However this encoder structure is future proof if you need other types to serialize that might not be serializable as string (but as record) like list of paragraph (that might contains comma).
@Timokasse @foresmac I did a version with the desired condensed shape.
https://gist.github.com/Et7f3/922260074697e585bb492b5f2e7e1166
@setaou does your scanner is equivalent to my trick with except ValueError
In case anyone is looking for the hack discussed above, I have implemented it here :
https://gist.github.com/setaou/ff98e82a9ce68f4c2b8637406b4620d1
In the end, the function
json.decoder.scanstring
still uses the C version, butjson.scanner.make_scanner
must use the python version.I have not benchmarked this hack as I do not make a heavy usage of it.