-
-
Save simrit1/a1fe2e85369491ecb82703f0cf2cde60 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from sklearn.neighbors import KNeighborsRegressor | |
| from sklearn.linear_model import LogisticRegressionCV | |
| def X_learner(df, model, y, D, X): | |
| temp = dgp.generate_data(true_te=True).sort_values(X) | |
| # Mu | |
| mu0 = model.fit(temp.loc[temp[D]==0, X], temp.loc[temp[D]==0, y]) | |
| temp['mu0_hat_'] = mu0.predict(temp[X]) | |
| mu1 = model.fit(temp.loc[temp[D]==1, X], temp.loc[temp[D]==1, y]) | |
| temp['mu1_hat_'] = mu1.predict(temp[X]) | |
| # Y | |
| y0 = KNeighborsRegressor(n_neighbors=1).fit(temp.loc[temp[D]==0, X], temp.loc[temp[D]==0, y]) | |
| temp['y0_hat'] = y0.predict(temp[X]) | |
| y1 = KNeighborsRegressor(n_neighbors=1).fit(temp.loc[temp[D]==1, X], temp.loc[temp[D]==1, y]) | |
| temp['y1_hat'] = y1.predict(temp[X]) | |
| # Weight | |
| e = LogisticRegressionCV().fit(y=temp[D], X=temp[X]).predict_proba(temp[X])[:,1] | |
| temp['mu0_hat'] = e * temp['y0_hat'] + (1-e) * temp['mu0_hat_'] | |
| temp['mu1_hat'] = (1-e) * temp['y1_hat'] + e * temp['mu1_hat_'] | |
| # Plot | |
| plot_TE(temp, true_te=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment